本文整理匯總了Python中caffe2.python.workspace.RunNetOnce方法的典型用法代碼示例。如果您正苦於以下問題:Python workspace.RunNetOnce方法的具體用法?Python workspace.RunNetOnce怎麽用?Python workspace.RunNetOnce使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類caffe2.python.workspace
的用法示例。
在下文中一共展示了workspace.RunNetOnce方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_model_pb
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunNetOnce [as 別名]
def load_model_pb(net_file, init_file=None, is_run_init=True, is_create_net=True):
net = core.Net("net")
if net_file is not None:
net.Proto().ParseFromString(open(net_file, "rb").read())
if init_file is None:
fn, ext = os.path.splitext(net_file)
init_file = fn + "_init" + ext
init_net = caffe2_pb2.NetDef()
init_net.ParseFromString(open(init_file, "rb").read())
if is_run_init:
workspace.RunNetOnce(init_net)
create_blobs_if_not_existed(net.external_inputs)
if net.Proto().name == "":
net.Proto().name = "net"
if is_create_net:
workspace.CreateNet(net)
return (net, init_net)
示例2: test_constant
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunNetOnce [as 別名]
def test_constant():
workspace.ResetWorkspace()
shape = [10, 10]
val = random.random()
net = core.Net("net")
net.ConstantFill([], ["Y"], shape=shape, value=val, run_once=0, name="Y")
# Execute via Caffe2
workspace.RunNetOnce(net)
# Import caffe2 network into ngraph
importer = C2Importer()
importer.parse_net_def(net.Proto(), verbose=False)
# Get handle
f_ng = importer.get_op_handle("Y")
# Execute
with ExecutorFactory() as ex:
f_result = ex.executor(f_ng)()
# compare Caffe2 and ngraph results
assert(np.ma.allequal(f_result, workspace.FetchBlob("Y")))
assert(np.isclose(f_result[0][0], val, atol=1e-6, rtol=0))
示例3: test_SquaredL2Distance
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunNetOnce [as 別名]
def test_SquaredL2Distance():
workspace.ResetWorkspace()
shape = (10, 10)
net = core.Net("net")
Y = net.GivenTensorFill([], "Y", shape=shape, values=np.random.uniform(-1, 1, shape))
T = net.GivenTensorFill([], "T", shape=shape, values=np.random.uniform(-1, 1, shape))
net.SquaredL2Distance([Y, T], "dist")
# Execute via Caffe2
workspace.RunNetOnce(net)
# Import caffe2 network into ngraph
importer = C2Importer()
importer.parse_net_def(net.Proto(), verbose=False)
# Get handle
f_ng = importer.get_op_handle("dist")
# Execute
with ExecutorFactory() as ex:
f_result = ex.executor(f_ng)()
assert(np.allclose(f_result, workspace.FetchBlob("dist"), equal_nan=False))
示例4: test_AveragedLoss
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunNetOnce [as 別名]
def test_AveragedLoss():
workspace.ResetWorkspace()
shape = (32,)
net = core.Net("net")
X = net.GivenTensorFill([], "Y", shape=shape, values=np.random.uniform(-1, 1, shape))
X.AveragedLoss([], ["loss"])
# Execute via Caffe2
workspace.RunNetOnce(net)
# Import caffe2 network into ngraph
importer = C2Importer()
importer.parse_net_def(net.Proto(), verbose=False)
# Get handle
f_ng = importer.get_op_handle("loss")
# Execute
with ExecutorFactory() as ex:
f_result = ex.executor(f_ng)()
assert(np.allclose(f_result, workspace.FetchBlob("loss"), equal_nan=False))
示例5: create_model
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunNetOnce [as 別名]
def create_model(self, X, S_lengths, S_indices, T):
#setup tril indices for the interactions
offset = 1 if self.arch_interaction_itself else 0
num_fea = len(self.emb_l) + 1
tril_indices = np.array([j + i * num_fea
for i in range(num_fea) for j in range(i + offset)])
self.FeedBlobWrapper(self.tint + "_tril_indices", tril_indices)
# create compute graph
if T is not None:
# WARNING: RunNetOnce call is needed only if we use brew and ConstantFill.
# We could use direct calls to self.model functions above to avoid it
workspace.RunNetOnce(self.model.param_init_net)
workspace.CreateNet(self.model.net)
if self.test_net is not None:
workspace.CreateNet(self.test_net)
示例6: initialize_model_from_cfg
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunNetOnce [as 別名]
def initialize_model_from_cfg():
def create_input_blobs(net_def):
for op in net_def.op:
for blob_in in op.input:
if not workspace.HasBlob(blob_in):
workspace.CreateBlob(blob_in)
model = model_builder.create(
cfg.MODEL.TYPE, train=False,
init_params=cfg.TEST.INIT_RANDOM_VARS_BEFORE_LOADING)
model_builder.add_inputs(model)
if cfg.TEST.INIT_RANDOM_VARS_BEFORE_LOADING:
workspace.RunNetOnce(model.param_init_net)
net_utils.initialize_from_weights_file(
model, cfg.TEST.WEIGHTS, broadcast=False)
create_input_blobs(model.net.Proto())
workspace.CreateNet(model.net)
workspace.CreateNet(model.conv_body_net)
if cfg.MODEL.MASK_ON:
create_input_blobs(model.mask_net.Proto())
workspace.CreateNet(model.mask_net)
if cfg.MODEL.KEYPOINTS_ON:
create_input_blobs(model.keypoint_net.Proto())
workspace.CreateNet(model.keypoint_net)
return model
示例7: LoadModel
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunNetOnce [as 別名]
def LoadModel(path, dbtype='minidb'):
'''
Load pretrained model from file
'''
log.info("Loading path: {}".format(path))
meta_net_def = pred_exp.load_from_db(path, dbtype)
init_net = core.Net(pred_utils.GetNet(
meta_net_def, predictor_constants.GLOBAL_INIT_NET_TYPE))
predict_init_net = core.Net(pred_utils.GetNet(
meta_net_def, predictor_constants.PREDICT_INIT_NET_TYPE))
predict_init_net.RunAllOnGPU()
init_net.RunAllOnGPU()
assert workspace.RunNetOnce(predict_init_net)
assert workspace.RunNetOnce(init_net)
示例8: ConvertModel
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunNetOnce [as 別名]
def ConvertModel(args):
meta_net_def = pred_exp.load_from_db(args.load_model_path, args.db_type)
net = core.Net(
pred_utils.GetNet(meta_net_def, predictor_constants.PREDICT_NET_TYPE)
)
init_net = core.Net(
pred_utils.
GetNet(meta_net_def, predictor_constants.GLOBAL_INIT_NET_TYPE)
)
init_net.RunAllOnGPU()
assert workspace.RunNetOnce(init_net)
pred_params = list(set(net.Proto().external_input) - set(['gpu_0/data']))
save_params = [str(param) for param in pred_params]
save_blobs = {}
for param in save_params:
scoped_blob_name = str(param)
unscoped_blob_name = unscope_name(scoped_blob_name)
if unscoped_blob_name not in save_blobs:
save_blobs[unscoped_blob_name] = workspace.FetchBlob(
scoped_blob_name)
log.info(
'{:s} -> {:s}'.format(scoped_blob_name, unscoped_blob_name))
log.info('saving weights to {}'.format(args.save_model_path))
with open(args.save_model_path, 'w') as fwrite:
pickle.dump(dict(blobs=save_blobs), fwrite, pickle.HIGHEST_PROTOCOL)
示例9: main
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunNetOnce [as 別名]
def main():
args = parser.parse_args()
args.gpu_id = 0
model = model_helper.ModelHelper(name="le_net", init_params=False)
# Bring in the init net from init_net.pb
init_net_proto = caffe2_pb2.NetDef()
with open(args.c2_init, "rb") as f:
init_net_proto.ParseFromString(f.read())
model.param_init_net = core.Net(init_net_proto) # model.param_init_net.AppendNet(core.Net(init_net_proto)) #
# bring in the predict net from predict_net.pb
predict_net_proto = caffe2_pb2.NetDef()
with open(args.c2_predict, "rb") as f:
predict_net_proto.ParseFromString(f.read())
model.net = core.Net(predict_net_proto) # model.net.AppendNet(core.Net(predict_net_proto))
# CUDA performance not impressive
#device_opts = core.DeviceOption(caffe2_pb2.PROTO_CUDA, args.gpu_id)
#model.net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
#model.param_init_net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
input_blob = model.net.external_inputs[0]
model.param_init_net.GaussianFill(
[],
input_blob.GetUnscopedName(),
shape=(args.batch_size, 3, args.img_size, args.img_size),
mean=0.0,
std=1.0)
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net, overwrite=True)
workspace.BenchmarkNet(model.net.Proto().name, 5, 20, True)
示例10: run_net
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunNetOnce [as 別名]
def run_net(net):
workspace.RunNetOnce(net)
gpu_dev = core.DeviceOption(caffe2_pb2.CUDA, 0)
name_scope = 'gpu_{}'.format(0)
with core.NameScope(name_scope):
with core.DeviceScope(gpu_dev):
data = workspace.FetchBlob(core.ScopedName('data'))
return data
示例11: init_weights
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunNetOnce [as 別名]
def init_weights(model):
# init weights in gpu_id = 0 and then broadcast
workspace.RunNetOnce(model.param_init_net)
nu.broadcast_parameters(model)
示例12: train
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunNetOnce [as 別名]
def train(INIT_NET, PREDICT_NET, epochs, batch_size, device_opts) :
data, gt_segmentation = get_data(batch_size)
workspace.FeedBlob("data", data, device_option=device_opts)
workspace.FeedBlob("gt_segmentation", gt_segmentation, device_option=device_opts)
train_model= model_helper.ModelHelper(name="train_net", arg_scope = {"order": "NHWC"})
output_segmentation = create_unet_model(train_model, device_opts=device_opts, is_test=0)
add_training_operators(output_segmentation, train_model, device_opts=device_opts)
with core.DeviceScope(device_opts):
brew.add_weight_decay(train_model, 0.001)
workspace.RunNetOnce(train_model.param_init_net)
workspace.CreateNet(train_model.net)
print '\ntraining for', epochs, 'epochs'
for j in range(0, epochs):
data, gt_segmentation = get_data(batch_size, 4)
workspace.FeedBlob("data", data, device_option=device_opts)
workspace.FeedBlob("gt_segmentation", gt_segmentation, device_option=device_opts)
workspace.RunNet(train_model.net, 1) # run for 10 times
print str(j) + ': ' + str(workspace.FetchBlob("avg_loss"))
print 'training done'
test_model= model_helper.ModelHelper(name="test_net", arg_scope = {"order": "NHWC"}, init_params=False)
create_unet_model(test_model, device_opts=device_opts, is_test=1)
workspace.RunNetOnce(test_model.param_init_net)
workspace.CreateNet(test_model.net, overwrite=True)
print '\nsaving test model'
save_net(INIT_NET, PREDICT_NET, test_model)
示例13: load_net
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunNetOnce [as 別名]
def load_net(INIT_NET, PREDICT_NET, device_opts):
init_def = caffe2_pb2.NetDef()
with open(INIT_NET, 'r') as f:
init_def.ParseFromString(f.read())
init_def.device_option.CopyFrom(device_opts)
workspace.RunNetOnce(init_def.SerializeToString())
net_def = caffe2_pb2.NetDef()
with open(PREDICT_NET, 'r') as f:
net_def.ParseFromString(f.read())
net_def.device_option.CopyFrom(device_opts)
workspace.CreateNet(net_def.SerializeToString(), overwrite=True)
示例14: sum_example
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunNetOnce [as 別名]
def sum_example():
# Caffe2 - network creation
net = core.Net("net")
shape = (2, 2, 2)
A = net.GivenTensorFill([], "A", shape=shape, values=np.random.uniform(-5, 5, shape), name="A")
B = net.GivenTensorFill([], "B", shape=shape, values=np.random.uniform(-5, 5, shape), name="B")
C = net.GivenTensorFill([], "C", shape=shape, values=np.random.uniform(-5, 5, shape), name="C")
A.Sum([B, C], ["Y"], name="Y")
# Execute via Caffe2
workspace.ResetWorkspace()
workspace.RunNetOnce(net)
# Execute in numpy
a = workspace.FetchBlob("A")
b = workspace.FetchBlob("B")
c = workspace.FetchBlob("C")
np_result = np.sum([a, b, c], axis=0)
# Import caffe2 network into ngraph
importer = C2Importer()
importer.parse_net_def(net.Proto(), verbose=False)
# Get handle
f_ng = importer.get_op_handle("Y")
# Execute in ngraph
f_result = ngt.make_transformer().computation(f_ng)()
# compare numpy, Caffe2 and ngraph results
print("Caffe2 result: \n{}\n".format(workspace.FetchBlob("Y")))
print("ngraph result: \n{}\n".format(f_result))
print("numpy result: \n{}\n".format(np_result))
assert(np.allclose(f_result, workspace.FetchBlob("Y")))
assert(np.allclose(f_result, np_result))
示例15: fc_example
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import RunNetOnce [as 別名]
def fc_example():
# Caffe2 - network creation
net = core.Net("net")
X = net.GivenTensorFill([], "X", shape=[2, 2], values=[1.0, 2.0, 3.0, 4.0], name="X")
W = net.GivenTensorFill([], "W", shape=[1, 2], values=[5.0, 6.0], name="W")
b = net.ConstantFill([], ["b"], shape=[1, ], value=0.5, run_once=0, name="b")
X.FC([W, b], ["Y"], name="Y")
# Execute via Caffe2
workspace.ResetWorkspace()
workspace.RunNetOnce(net)
# Import caffe2 network into ngraph
importer = C2Importer()
importer.parse_net_def(net.Proto(), verbose=False)
# Get handle
f_ng = importer.get_op_handle("Y")
# Execute
f_result = ngt.make_transformer().computation(f_ng)()
# compare Caffe2 and ngraph results
print("Caffe2 result: {}:\n{}".format("Y", workspace.FetchBlob("Y")))
print("ngraph result: {}:\n{}".format("Y", f_result))
assert(np.array_equal(f_result, workspace.FetchBlob("Y")))