本文整理匯總了Python中caffe2.python.workspace.Predictor方法的典型用法代碼示例。如果您正苦於以下問題:Python workspace.Predictor方法的具體用法?Python workspace.Predictor怎麽用?Python workspace.Predictor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類caffe2.python.workspace
的用法示例。
在下文中一共展示了workspace.Predictor方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import Predictor [as 別名]
def main():
args = make_args()
config = configparser.ConfigParser()
utils.load_config(config, args.config)
for cmd in args.modify:
utils.modify_config(config, cmd)
with open(os.path.expanduser(os.path.expandvars(args.logging)), 'r') as f:
logging.config.dictConfig(yaml.load(f))
torch.manual_seed(args.seed)
model_dir = utils.get_model_dir(config)
init_net = caffe2_pb2.NetDef()
with open(os.path.join(model_dir, 'init_net.pb'), 'rb') as f:
init_net.ParseFromString(f.read())
predict_net = caffe2_pb2.NetDef()
with open(os.path.join(model_dir, 'predict_net.pb'), 'rb') as f:
predict_net.ParseFromString(f.read())
p = workspace.Predictor(init_net, predict_net)
height, width = tuple(map(int, config.get('image', 'size').split()))
tensor = torch.randn(1, 3, height, width)
# Checksum
output = p.run([tensor.numpy()])
for key, a in [
('tensor', tensor.cpu().numpy()),
('output', output[0]),
]:
print('\t'.join(map(str, [key, a.shape, utils.abs_mean(a), hashlib.md5(a.tostring()).hexdigest()])))
示例2: load_model
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import Predictor [as 別名]
def load_model(init_net_path, predict_net_path):
with open(init_net_path, "rb") as f:
init_net = f.read()
with open(predict_net_path, "rb") as f:
predict_net = f.read()
p = workspace.Predictor(init_net, predict_net)
return p
示例3: classify
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import Predictor [as 別名]
def classify(self, path):
input_image_size = self.model[4]
img = skimage.img_as_float(skimage.io.imread(path)).astype(np.float32)
img = self.rescale(img, input_image_size, input_image_size)
img = self.crop_center(img, input_image_size, input_image_size)
img = img.swapaxes(1, 2).swapaxes(0, 1)
img = img[(2, 1, 0), :, :]
img = img * 255 - self.mean
img = img[np.newaxis, :, :, :].astype(np.float32)
p = workspace.Predictor(self.init_net, self.predict_net)
results = p.run([img])
results = np.asarray(results)
results = np.delete(results, 1)
filtered_results = []
for i, r in enumerate(results):
if (float(r) > 0.01):
filtered_results.append((self.get_category_from_code(i + 1), float(r)))
return sorted(filtered_results, key=lambda result: result[1], reverse=True)
示例4: generate_test_output_data
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import Predictor [as 別名]
def generate_test_output_data(caffe2_init_net, caffe2_predict_net, inputs):
p = c2_workspace.Predictor(caffe2_init_net, caffe2_predict_net)
inputs_map = {input[0]:input[1] for input in inputs}
output = p.run(inputs_map)
c2_workspace.ResetWorkspace()
return output
示例5: run_caffe2_model
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import Predictor [as 別名]
def run_caffe2_model(predict_net_path, init_net_path, feed_dict):
from caffe2.python import workspace
with open(init_net_path, "rb") as f:
init_net = f.read()
with open(predict_net_path, "rb") as f:
predict_net = f.read()
predictor = workspace.Predictor(init_net, predict_net)
return [np.array(arr) for arr in predictor.run(feed_dict)]
示例6: __init__
# 需要導入模塊: from caffe2.python import workspace [as 別名]
# 或者: from caffe2.python.workspace import Predictor [as 別名]
def __init__(self, args, config):
self.args = args
self.config = config
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.cache_dir = utils.get_cache_dir(config)
self.model_dir = utils.get_model_dir(config)
_, self.num_parts = utils.get_dataset_mappers(config)
self.limbs_index = utils.get_limbs_index(config)
if args.debug is None:
self.draw_cluster = utils.visualize.DrawCluster(colors=args.colors, thickness=args.thickness)
else:
self.draw_feature = utils.visualize.DrawFeature()
s = re.search('(-?[0-9]+)([a-z]+)(-?[0-9]+)', args.debug)
stage = int(s.group(1))
name = s.group(2)
channel = int(s.group(3))
self.get_feature = lambda outputs: outputs[stage][name][0][channel]
self.height, self.width = tuple(map(int, config.get('image', 'size').split()))
if args.caffe:
init_net = caffe2_pb2.NetDef()
with open(os.path.join(self.model_dir, 'init_net.pb'), 'rb') as f:
init_net.ParseFromString(f.read())
predict_net = caffe2_pb2.NetDef()
with open(os.path.join(self.model_dir, 'predict_net.pb'), 'rb') as f:
predict_net.ParseFromString(f.read())
p = workspace.Predictor(init_net, predict_net)
self.inference = lambda tensor: [{'parts': torch.from_numpy(parts), 'limbs': torch.from_numpy(limbs)} for parts, limbs in zip(*[iter(p.run([tensor.detach().cpu().numpy()]))] * 2)]
else:
self.step, self.epoch, self.dnn, self.stages = self.load()
self.inference = model.Inference(config, self.dnn, self.stages)
self.inference.eval()
if torch.cuda.is_available():
self.inference.cuda()
logging.info(humanize.naturalsize(sum(var.cpu().numpy().nbytes for var in self.inference.state_dict().values())))
self.cap = self.create_cap()
self.keys = set(args.keys)
self.resize = transform.parse_transform(config, config.get('transform', 'resize_test'))
self.transform_image = transform.get_transform(config, config.get('transform', 'image_test').split())
self.transform_tensor = transform.get_transform(config, config.get('transform', 'tensor').split())