本文整理匯總了Python中caffe2.python.utils.MakeArgument方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.MakeArgument方法的具體用法?Python utils.MakeArgument怎麽用?Python utils.MakeArgument使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類caffe2.python.utils
的用法示例。
在下文中一共展示了utils.MakeArgument方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_max
# 需要導入模塊: from caffe2.python import utils [as 別名]
# 或者: from caffe2.python.utils import MakeArgument [as 別名]
def get_max(self, op, tensor, tensor_idx, tensor_name, max_name):
global iteration_idx
name = max_name + "_" + str(tensor_idx)
op_hist_name = tensor_name + "_" + max_name + "_" + str(tensor_idx)
arg = self.get_arg(op, name)
if iteration_idx < self.kl_iter_num_for_range:
max_min = np.array([np.max(tensor), np.min(tensor)]).astype(np.float32)
if arg is not None:
orig_max = arg.floats[0]
orig_min = arg.floats[1]
cur_max = max(orig_max, max_min[0])
cur_min = min(orig_min, max_min[1])
max_min = np.array([cur_max, cur_min]).astype(np.float32)
self.remove_arg(op, name)
# save max vaules in predict_def as operator arguments
max_arg = utils.MakeArgument(name, max_min)
op.arg.extend([max_arg])
else:
assert arg is not None
max_val = arg.floats[0]
min_val = arg.floats[1]
self.get_kl_hist(tensor, min_val, max_val, op_hist_name)
示例2: update_max
# 需要導入模塊: from caffe2.python import utils [as 別名]
# 或者: from caffe2.python.utils import MakeArgument [as 別名]
def update_max(self, op, max_name, tensor_idx, tensor_name):
"""update the max data of the collected data"""
global hist
global hist_edges
global iteration_idx
name = max_name + "_" + str(tensor_idx)
hist_name = tensor_name + "_" + max_name + "_" + str(tensor_idx)
P_sum = iteration_idx - self.kl_iter_num_for_range
arg = self.get_arg(op, name)
assert arg is not None
max_val = arg.floats[0]
min_val = arg.floats[1]
hist_iter = hist[hist_name]
hist_edges_iter = hist_edges[hist_name]
layer_max = self.get_optimal_scaling_factor(hist_iter, hist_edges_iter,
P_sum, max_val, min_val)
self.remove_arg(op, name)
max_arg = utils.MakeArgument(name, np.array([layer_max]).astype(np.float32))
# save max vaules in predict_def as operator arguments
op.arg.extend([max_arg])
示例3: check_set_pb_arg
# 需要導入模塊: from caffe2.python import utils [as 別名]
# 或者: from caffe2.python.utils import MakeArgument [as 別名]
def check_set_pb_arg(pb, arg_name, arg_attr, arg_value, allow_override=False):
arg = get_pb_arg(pb, arg_name)
if arg is None:
arg = putils.MakeArgument(arg_name, arg_value)
assert hasattr(arg, arg_attr)
pb.arg.extend([arg])
if allow_override and getattr(arg, arg_attr) != arg_value:
logger.warning(
"Override argument {}: {} -> {}".format(arg_name, getattr(arg, arg_attr), arg_value)
)
setattr(arg, arg_attr, arg_value)
else:
assert arg is not None
assert getattr(arg, arg_attr) == arg_value, "Existing value {}, new value {}".format(
getattr(arg, arg_attr), arg_value
)
示例4: add_bbox_ops
# 需要導入模塊: from caffe2.python import utils [as 別名]
# 或者: from caffe2.python.utils import MakeArgument [as 別名]
def add_bbox_ops(args, net, blobs):
new_ops = []
new_external_outputs = []
# Operators for bboxes
op_box = core.CreateOperator(
"BBoxTransform",
['rpn_rois', 'bbox_pred', 'im_info'],
['pred_bbox'],
weights=cfg.MODEL.BBOX_REG_WEIGHTS,
apply_scale=False,
correct_transform_coords=True,
)
new_ops.extend([op_box])
blob_prob = 'cls_prob'
blob_box = 'pred_bbox'
op_nms = core.CreateOperator(
"BoxWithNMSLimit",
[blob_prob, blob_box],
['score_nms', 'bbox_nms', 'class_nms'],
arg=[
putils.MakeArgument("score_thresh", cfg.TEST.SCORE_THRESH),
putils.MakeArgument("nms", cfg.TEST.NMS),
putils.MakeArgument("detections_per_im", cfg.TEST.DETECTIONS_PER_IM),
putils.MakeArgument("soft_nms_enabled", cfg.TEST.SOFT_NMS.ENABLED),
putils.MakeArgument("soft_nms_method", cfg.TEST.SOFT_NMS.METHOD),
putils.MakeArgument("soft_nms_sigma", cfg.TEST.SOFT_NMS.SIGMA),
]
)
new_ops.extend([op_nms])
new_external_outputs.extend(['score_nms', 'bbox_nms', 'class_nms'])
net.Proto().op.extend(new_ops)
net.Proto().external_output.extend(new_external_outputs)
示例5: save_net
# 需要導入模塊: from caffe2.python import utils [as 別名]
# 或者: from caffe2.python.utils import MakeArgument [as 別名]
def save_net(INIT_NET, PREDICT_NET, model) :
with open(PREDICT_NET, 'wb') as f:
f.write(model.net._net.SerializeToString())
init_net = caffe2_pb2.NetDef()
for param in model.params:
#print param
blob = workspace.FetchBlob(param)
shape = blob.shape
op = core.CreateOperator("GivenTensorFill", [], [param],arg=[ utils.MakeArgument("shape", shape),utils.MakeArgument("values", blob)])
init_net.op.extend([op])
init_net.op.extend([core.CreateOperator("ConstantFill", [], ["data"], shape=get_data(1)[0][0,:,:,:].shape)])
with open(INIT_NET, 'wb') as f:
f.write(init_net.SerializeToString())
示例6: save_net
# 需要導入模塊: from caffe2.python import utils [as 別名]
# 或者: from caffe2.python.utils import MakeArgument [as 別名]
def save_net(INIT_NET, PREDICT_NET, model) :
with open(PREDICT_NET, 'wb') as f:
f.write(model.net._net.SerializeToString())
init_net = caffe2_pb2.NetDef()
for param in model.params:
blob = workspace.FetchBlob(param)
shape = blob.shape
op = core.CreateOperator("GivenTensorFill", [], [param],arg=[ utils.MakeArgument("shape", shape),utils.MakeArgument("values", blob)])
init_net.op.extend([op])
init_net.op.extend([core.CreateOperator("ConstantFill", [], ["data"], shape=(1,30,30))])
with open(INIT_NET, 'wb') as f:
f.write(init_net.SerializeToString())
示例7: get_max_min
# 需要導入模塊: from caffe2.python import utils [as 別名]
# 或者: from caffe2.python.utils import MakeArgument [as 別名]
def get_max_min(self, op, tensor, tensor_idx, tensor_name, name):
#name = name + "_" + str(tensor_idx)
arg = self.get_arg(op, name)
max_min = np.array([np.max(tensor), min(np.min(tensor), 0)]).astype(np.float32)
if arg is not None:
orig_max = arg.floats[0]
orig_min = arg.floats[1]
cur_max = max(orig_max, max_min[0])
cur_min = min(orig_min, max_min[1])
max_min = np.array([cur_max, cur_min]).astype(np.float32)
self.remove_arg(op, name)
# save max and min vaules in predict_def as operator arguments
max_arg = utils.MakeArgument(name, max_min)
op.arg.extend([max_arg])
示例8: AddArgument
# 需要導入模塊: from caffe2.python import utils [as 別名]
# 或者: from caffe2.python.utils import MakeArgument [as 別名]
def AddArgument(op, key, value):
"""Makes an argument based on the value type."""
op.arg.extend([utils.MakeArgument(key, value)])
################################################################################
# Common translators for layers.
################################################################################
示例9: AddTensor
# 需要導入模塊: from caffe2.python import utils [as 別名]
# 或者: from caffe2.python.utils import MakeArgument [as 別名]
def AddTensor(init_net, name, blob):
''' Create an operator to store the tensor 'blob',
run the operator to put the blob to workspace.
uint8 is stored as an array of string with one element.
'''
from caffe2.python import core, utils
kTypeNameMapper = {
np.dtype('float32'): "GivenTensorFill",
np.dtype('int32'): "GivenTensorIntFill",
np.dtype('int64'): "GivenTensorInt64Fill",
np.dtype('uint8'): "GivenTensorStringFill",
}
shape = blob.shape
values = blob
# pass array of uint8 as a string to save storage
# storing uint8_t has a large overhead for now
if blob.dtype == np.dtype('uint8'):
shape = [1]
values = [str(blob.data)]
op = core.CreateOperator(
kTypeNameMapper[blob.dtype],
[], [name],
arg=[
utils.MakeArgument("shape", shape),
utils.MakeArgument("values", values),
]
)
init_net.op.extend([op])
示例10: CreateByOutputName
# 需要導入模塊: from caffe2.python import utils [as 別名]
# 或者: from caffe2.python.utils import MakeArgument [as 別名]
def CreateByOutputName(init_def, index, name, shape, values, device_opts):
from caffe2.python import core, utils
new_op = core.CreateOperator(
"GivenTensorFill",
[],
[name],
arg=[utils.MakeArgument("shape", shape),
utils.MakeArgument("values", values)],
device_option = device_opts
)
init_tmp = init_def.op[index:]
del init_def.op[index:]
init_def.op.extend([new_op])
init_def.op.extend(init_tmp)
示例11: add_bbox_ops
# 需要導入模塊: from caffe2.python import utils [as 別名]
# 或者: from caffe2.python.utils import MakeArgument [as 別名]
def add_bbox_ops(args, net, blobs):
new_ops = []
new_external_outputs = []
# Operators for bboxes
op_box = core.CreateOperator(
"BBoxTransform",
["rpn_rois", "bbox_pred", "im_info"],
["pred_bbox"],
weights=cfg.MODEL.BBOX_REG_WEIGHTS,
apply_scale=False,
correct_transform_coords=True,
)
new_ops.extend([op_box])
blob_prob = "cls_prob"
blob_box = "pred_bbox"
op_nms = core.CreateOperator(
"BoxWithNMSLimit",
[blob_prob, blob_box],
["score_nms", "bbox_nms", "class_nms"],
arg=[
putils.MakeArgument("score_thresh", cfg.TEST.SCORE_THRESH),
putils.MakeArgument("nms", cfg.TEST.NMS),
putils.MakeArgument("detections_per_im", cfg.TEST.DETECTIONS_PER_IM),
putils.MakeArgument("soft_nms_enabled", cfg.TEST.SOFT_NMS.ENABLED),
putils.MakeArgument("soft_nms_method", cfg.TEST.SOFT_NMS.METHOD),
putils.MakeArgument("soft_nms_sigma", cfg.TEST.SOFT_NMS.SIGMA),
],
)
new_ops.extend([op_nms])
new_external_outputs.extend(["score_nms", "bbox_nms", "class_nms"])
net.Proto().op.extend(new_ops)
net.Proto().external_output.extend(new_external_outputs)
示例12: FusePadConv
# 需要導入模塊: from caffe2.python import utils [as 別名]
# 或者: from caffe2.python.utils import MakeArgument [as 別名]
def FusePadConv(predict_def, model_info):
"""
For models converted from torch
"""
pad_index = -100
pad_indexes = []
for i, op in enumerate(predict_def.op):
if op.type == "PadImage":
pad_index = i + 1
elif op.type == "Conv" or op.type == "ConvFusion":
if (pad_index == i):
pad_indexes.append(i - 1)
pad_index = -100
rm_cnt = 0
for j in pad_indexes:
index = j - rm_cnt
pad_op = predict_def.op[index]
conv_op = predict_def.op[index + 1]
if (pad_op.type != "PadImage" or
(conv_op.type != "Conv" and conv_op.type != "ConvFusion")):
logging.info("Found error in Conv compatibility!")
continue
if model_info["model_type"] != "prototext":
pad_value = None
for i in range(len(pad_op.arg)):
if pad_op.arg[i].name == "pads":
pad_value = pad_op.arg[i].ints
max_col = max(pad_value[0], pad_value[2])
max_row = max(pad_value[1], pad_value[3])
pad_value = [max_col, max_row, max_col, max_row]
from caffe2.python import core, utils
for i in range(len(conv_op.arg)):
if conv_op.arg[i].name == "pads":
del predict_def.op[index+1].arg[i]
predict_def.op[index+1].arg.extend([utils.MakeArgument("pads", pad_value)])
predict_def.op[index+1].input[0] = pad_op.input[0]
# Delete pad op
del predict_def.op[index]
rm_cnt += 1
logging.warning("[OPT] Merged {} padImage ops into Conv ops by folding"
.format(rm_cnt))