本文整理匯總了Python中caffe2.python.core.ScopedName方法的典型用法代碼示例。如果您正苦於以下問題:Python core.ScopedName方法的具體用法?Python core.ScopedName怎麽用?Python core.ScopedName使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類caffe2.python.core
的用法示例。
在下文中一共展示了core.ScopedName方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_net
# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import ScopedName [as 別名]
def get_net(data_loader, name):
logger = logging.getLogger(__name__)
blob_names = data_loader.get_output_names()
net = core.Net(name)
net.type = 'dag'
for gpu_id in range(cfg.NUM_GPUS):
with core.NameScope('gpu_{}'.format(gpu_id)):
with core.DeviceScope(muji.OnGPU(gpu_id)):
for blob_name in blob_names:
blob = core.ScopedName(blob_name)
workspace.CreateBlob(blob)
net.DequeueBlobs(
data_loader._blobs_queue_name, blob_names)
logger.info("Protobuf:\n" + str(net.Proto()))
return net
示例2: create_enqueue_blobs
# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import ScopedName [as 別名]
def create_enqueue_blobs(self):
blob_names = self.get_output_names()
enqueue_blob_names = [
'{}_enqueue_{}'.format(b, self._loader_id) for b in blob_names
]
for gpu_id in range(self._num_gpus):
with c2_utils.NamedCudaScope(gpu_id):
for blob in enqueue_blob_names:
workspace.CreateBlob(core.ScopedName(blob))
return enqueue_blob_names
示例3: add_training_inputs
# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import ScopedName [as 別名]
def add_training_inputs(model, roidb=None):
"""Create network input ops and blobs used for training. To be called
*after* model_builder.create().
"""
# Implementation notes:
# Typically, one would create the input ops and then the rest of the net.
# However, creating the input ops depends on loading the dataset, which
# can take a few minutes for COCO.
# We prefer to avoid waiting so debugging can fail fast.
# Thus, we create the net *without input ops* prior to loading the
# dataset, and then add the input ops after loading the dataset.
# Since we defer input op creation, we need to do a little bit of surgery
# to place the input ops at the start of the network op list.
assert model.train, 'Training inputs can only be added to a trainable model'
if roidb is not None:
# To make debugging easier you can set cfg.DATA_LOADER.NUM_THREADS = 1
model.roi_data_loader = RoIDataLoader(
roidb,
num_loaders=cfg.DATA_LOADER.NUM_THREADS,
minibatch_queue_size=cfg.DATA_LOADER.MINIBATCH_QUEUE_SIZE,
blobs_queue_capacity=cfg.DATA_LOADER.BLOBS_QUEUE_CAPACITY
)
orig_num_op = len(model.net._net.op)
blob_names = roi_data_minibatch.get_minibatch_blob_names(is_training=True)
for gpu_id in range(cfg.NUM_GPUS):
with c2_utils.NamedCudaScope(gpu_id):
for blob_name in blob_names:
workspace.CreateBlob(core.ScopedName(blob_name))
model.net.DequeueBlobs(
model.roi_data_loader._blobs_queue_name, blob_names
)
# A little op surgery to move input ops to the start of the net
diff = len(model.net._net.op) - orig_num_op
new_op = model.net._net.op[-diff:] + model.net._net.op[:-diff]
del model.net._net.op[:]
model.net._net.op.extend(new_op)
示例4: run_net
# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import ScopedName [as 別名]
def run_net(net):
workspace.RunNetOnce(net)
gpu_dev = core.DeviceOption(caffe2_pb2.CUDA, 0)
name_scope = 'gpu_{}'.format(0)
with core.NameScope(name_scope):
with core.DeviceScope(gpu_dev):
data = workspace.FetchBlob(core.ScopedName('data'))
return data
示例5: im_detect_mask
# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import ScopedName [as 別名]
def im_detect_mask(model, im_scale, boxes):
"""Infer instance segmentation masks. This function must be called after
im_detect_bbox as it assumes that the Caffe2 workspace is already populated
with the necessary blobs.
Arguments:
model (DetectionModelHelper): the detection model to use
im_scales (list): image blob scales as returned by im_detect_bbox
boxes (ndarray): R x 4 array of bounding box detections (e.g., as
returned by im_detect_bbox)
Returns:
pred_masks (ndarray): R x K x M x M array of class specific soft masks
output by the network (must be processed by segm_results to convert
into hard masks in the original image coordinate space)
"""
M = cfg.MRCNN.RESOLUTION
if boxes.shape[0] == 0:
pred_masks = np.zeros((0, M, M), np.float32)
return pred_masks
inputs = {'mask_rois': _get_rois_blob(boxes, im_scale)}
# Add multi-level rois for FPN
if cfg.FPN.MULTILEVEL_ROIS:
_add_multilevel_rois_for_test(inputs, 'mask_rois')
for k, v in inputs.items():
workspace.FeedBlob(core.ScopedName(k), v)
workspace.RunNet(model.mask_net.Proto().name)
# Fetch masks
pred_masks = workspace.FetchBlob(
core.ScopedName('mask_fcn_probs')
).squeeze()
if cfg.MRCNN.CLS_SPECIFIC_MASK:
pred_masks = pred_masks.reshape([-1, cfg.MODEL.NUM_CLASSES, M, M])
else:
pred_masks = pred_masks.reshape([-1, 1, M, M])
return pred_masks
示例6: im_detect_keypoints
# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import ScopedName [as 別名]
def im_detect_keypoints(model, im_scale, boxes):
"""Infer instance keypoint poses. This function must be called after
im_detect_bbox as it assumes that the Caffe2 workspace is already populated
with the necessary blobs.
Arguments:
model (DetectionModelHelper): the detection model to use
im_scales (list): image blob scales as returned by im_detect_bbox
boxes (ndarray): R x 4 array of bounding box detections (e.g., as
returned by im_detect_bbox)
Returns:
pred_heatmaps (ndarray): R x J x M x M array of keypoint location
logits (softmax inputs) for each of the J keypoint types output
by the network (must be processed by keypoint_results to convert
into point predictions in the original image coordinate space)
"""
M = cfg.KRCNN.HEATMAP_SIZE
if boxes.shape[0] == 0:
pred_heatmaps = np.zeros((0, cfg.KRCNN.NUM_KEYPOINTS, M, M), np.float32)
return pred_heatmaps
inputs = {'keypoint_rois': _get_rois_blob(boxes, im_scale)}
# Add multi-level rois for FPN
if cfg.FPN.MULTILEVEL_ROIS:
_add_multilevel_rois_for_test(inputs, 'keypoint_rois')
for k, v in inputs.items():
workspace.FeedBlob(core.ScopedName(k), v)
workspace.RunNet(model.keypoint_net.Proto().name)
pred_heatmaps = workspace.FetchBlob(core.ScopedName('kps_score')).squeeze()
# In case of 1
if pred_heatmaps.ndim == 3:
pred_heatmaps = np.expand_dims(pred_heatmaps, axis=0)
return pred_heatmaps
示例7: _get_result_blobs
# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import ScopedName [as 別名]
def _get_result_blobs(check_blobs):
ret = {}
for x in check_blobs:
sn = core.ScopedName(x)
if workspace.HasBlob(sn):
ret[x] = workspace.FetchBlob(sn)
else:
ret[x] = None
return ret
示例8: run_model_cfg
# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import ScopedName [as 別名]
def run_model_cfg(args, im, check_blobs):
workspace.ResetWorkspace()
model, _ = load_model(args)
with c2_utils.NamedCudaScope(0):
cls_boxes, cls_segms, cls_keyps = test_engine.im_detect_all(
model, im, None, None,
)
boxes, segms, keypoints, classes = vis_utils.convert_from_cls_format(
cls_boxes, cls_segms, cls_keyps)
# sort the results based on score for comparision
boxes, segms, keypoints, classes = _sort_results(
boxes, segms, keypoints, classes)
# write final results back to workspace
def _ornone(res):
return np.array(res) if res is not None else np.array([], dtype=np.float32)
with c2_utils.NamedCudaScope(0):
workspace.FeedBlob(core.ScopedName('result_boxes'), _ornone(boxes))
workspace.FeedBlob(core.ScopedName('result_segms'), _ornone(segms))
workspace.FeedBlob(core.ScopedName('result_keypoints'), _ornone(keypoints))
workspace.FeedBlob(core.ScopedName('result_classids'), _ornone(classes))
# get result blobs
with c2_utils.NamedCudaScope(0):
ret = _get_result_blobs(check_blobs)
return ret
示例9: add_training_inputs
# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import ScopedName [as 別名]
def add_training_inputs(model, roidb=None):
"""Create network input ops and blobs used for training. To be called
*after* model_builder.create().
"""
# Implementation notes:
# Typically, one would create the input ops and then the rest of the net.
# However, creating the input ops depends on loading the dataset, which
# can take a few minutes for COCO.
# We prefer to avoid waiting so debugging can fail fast.
# Thus, we create the net *without input ops* prior to loading the
# dataset, and then add the input ops after loading the dataset.
# Since we defer input op creation, we need to do a little bit of surgery
# to place the input ops at the start of the network op list.
assert model.train, 'Training inputs can only be added to a trainable model'
if roidb is not None:
# To make debugging easier you can set cfg.DATA_LOADER.NUM_THREADS = 1
model.roi_data_loader = RoIDataLoader(
roidb, num_loaders=cfg.DATA_LOADER.NUM_THREADS
)
orig_num_op = len(model.net._net.op)
blob_names = roi_data.minibatch.get_minibatch_blob_names(
is_training=True
)
for gpu_id in range(cfg.NUM_GPUS):
with c2_utils.NamedCudaScope(gpu_id):
for blob_name in blob_names:
workspace.CreateBlob(core.ScopedName(blob_name))
model.net.DequeueBlobs(
model.roi_data_loader._blobs_queue_name, blob_names
)
# A little op surgery to move input ops to the start of the net
diff = len(model.net._net.op) - orig_num_op
new_op = model.net._net.op[-diff:] + model.net._net.op[:-diff]
del model.net._net.op[:]
model.net._net.op.extend(new_op)