當前位置: 首頁>>代碼示例>>Python>>正文


Python core.DeviceScope方法代碼示例

本文整理匯總了Python中caffe2.python.core.DeviceScope方法的典型用法代碼示例。如果您正苦於以下問題:Python core.DeviceScope方法的具體用法?Python core.DeviceScope怎麽用?Python core.DeviceScope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在caffe2.python.core的用法示例。


在下文中一共展示了core.DeviceScope方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: BroacastParameters

# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import DeviceScope [as 別名]
def BroacastParameters(model, src_gpu, gpus):

    log.info("Broadcasting parameters from gpu {} to gpu: {}".format(
        src_gpu, ','.join([str(g) for g in gpus]))
    )

    for param in model.params:
        if 'gpu_{}'.format(gpus[0]) in str(param):
            for i in gpus:
                blob = workspace.FetchBlob(str(param))
                target_blob_name = str(param).replace(
                    'gpu_{}'.format(src_gpu),
                    'gpu_{}'.format(i)
                )
                log.info('broadcast {} -> {}'.format(
                    str(param), target_blob_name)
                )
                workspace.FetchBlob(str(param))
                with core.DeviceScope(
                        core.DeviceOption(caffe2_pb2.CUDA, i)):
                    workspace.FeedBlob(target_blob_name, blob) 
開發者ID:facebookresearch,項目名稱:VMZ,代碼行數:23,代碼來源:model_loader.py

示例2: _run_test

# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import DeviceScope [as 別名]
def _run_test(self, A, B, check_grad=False):
        with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)):
            op = core.CreateOperator('SpatialNarrowAs', ['A', 'B'], ['C'])
            workspace.FeedBlob('A', A)
            workspace.FeedBlob('B', B)
        workspace.RunOperatorOnce(op)
        C = workspace.FetchBlob('C')

        if check_grad:
            gc = gradient_checker.GradientChecker(
                stepsize=0.005,
                threshold=0.005,
                device_option=core.DeviceOption(caffe2_pb2.CUDA, 0)
            )

            res, grad, grad_estimated = gc.CheckSimple(op, [A, B], 0, [0])
            self.assertTrue(res, 'Grad check failed')

        dims = C.shape
        C_ref = A[:dims[0], :dims[1], :dims[2], :dims[3]]
        np.testing.assert_allclose(C, C_ref, rtol=1e-5, atol=1e-08) 
開發者ID:yihui-he,項目名稱:KL-Loss,代碼行數:23,代碼來源:test_spatial_narrow_as_op.py

示例3: _run_op_test

# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import DeviceScope [as 別名]
def _run_op_test(self, X, I, check_grad=False):
        with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)):
            op = core.CreateOperator('BatchPermutation', ['X', 'I'], ['Y'])
            workspace.FeedBlob('X', X)
            workspace.FeedBlob('I', I)
        workspace.RunOperatorOnce(op)
        Y = workspace.FetchBlob('Y')

        if check_grad:
            gc = gradient_checker.GradientChecker(
                stepsize=0.1,
                threshold=0.001,
                device_option=core.DeviceOption(caffe2_pb2.CUDA, 0)
            )

            res, grad, grad_estimated = gc.CheckSimple(op, [X, I], 0, [0])
            self.assertTrue(res, 'Grad check failed')

        Y_ref = X[I]
        np.testing.assert_allclose(Y, Y_ref, rtol=1e-5, atol=1e-08) 
開發者ID:yihui-he,項目名稱:KL-Loss,代碼行數:22,代碼來源:test_batch_permutation_op.py

示例4: get_net

# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import DeviceScope [as 別名]
def get_net(data_loader, name):
    logger = logging.getLogger(__name__)
    blob_names = data_loader.get_output_names()
    net = core.Net(name)
    net.type = 'dag'
    for gpu_id in range(cfg.NUM_GPUS):
        with core.NameScope('gpu_{}'.format(gpu_id)):
            with core.DeviceScope(muji.OnGPU(gpu_id)):
                for blob_name in blob_names:
                    blob = core.ScopedName(blob_name)
                    workspace.CreateBlob(blob)
                net.DequeueBlobs(
                    data_loader._blobs_queue_name, blob_names)
    logger.info("Protobuf:\n" + str(net.Proto()))

    return net 
開發者ID:yihui-he,項目名稱:KL-Loss,代碼行數:18,代碼來源:test_loader.py

示例5: _update_bn_stats_gpu

# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import DeviceScope [as 別名]
def _update_bn_stats_gpu(self):
        """
        Copy to GPU.
        Note: the actual blobs used at test time are "rm" and "riv"
        """

        num_gpus = cfg.NUM_GPUS
        root_gpu_id = cfg.ROOT_GPU_ID
        for i in range(root_gpu_id, root_gpu_id + num_gpus):
            with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, i)):
                for bn_layer in self._bn_layers:
                    workspace.FeedBlob(
                        'gpu_{}/'.format(i) + bn_layer + '_bn_rm',
                        np.array(self._meanX_dict[bn_layer], dtype=np.float32),
                    )
                    """
                    Note: riv is acutally running var (not running inv var)!!!!
                    """
                    workspace.FeedBlob(
                        'gpu_{}/'.format(i) + bn_layer + '_bn_riv',
                        np.array(self._var_dict[bn_layer], dtype=np.float32),
                    ) 
開發者ID:facebookresearch,項目名稱:video-long-term-feature-banks,代碼行數:24,代碼來源:bn_helper.py

示例6: CudaScope

# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import DeviceScope [as 別名]
def CudaScope(gpu_id):
    """Create a CUDA device scope for GPU device `gpu_id`."""
    gpu_dev = CudaDevice(gpu_id)
    with core.DeviceScope(gpu_dev):
        yield 
開發者ID:yihui-he,項目名稱:KL-Loss,代碼行數:7,代碼來源:c2.py

示例7: CpuScope

# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import DeviceScope [as 別名]
def CpuScope():
    """Create a CPU device scope."""
    cpu_dev = core.DeviceOption(caffe2_pb2.CPU)
    with core.DeviceScope(cpu_dev):
        yield 
開發者ID:yihui-he,項目名稱:KL-Loss,代碼行數:7,代碼來源:c2.py

示例8: test_size_exceptions

# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import DeviceScope [as 別名]
def test_size_exceptions(self):
        A = np.random.randn(2, 256, 42, 86).astype(np.float32)
        I = np.array(np.random.permutation(10), dtype=np.int32)
        with self.assertRaises(RuntimeError):
            self._run_op_test(A, I)

    # See doc string in _run_speed_test
    # def test_perf(self):
    #     with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)):
    #         self._run_speed_test() 
開發者ID:yihui-he,項目名稱:KL-Loss,代碼行數:12,代碼來源:test_batch_permutation_op.py

示例9: run_net

# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import DeviceScope [as 別名]
def run_net(net):
    workspace.RunNetOnce(net)
    gpu_dev = core.DeviceOption(caffe2_pb2.CUDA, 0)
    name_scope = 'gpu_{}'.format(0)
    with core.NameScope(name_scope):
        with core.DeviceScope(gpu_dev):
            data = workspace.FetchBlob(core.ScopedName('data'))
            return data 
開發者ID:yihui-he,項目名稱:KL-Loss,代碼行數:10,代碼來源:test_loader.py

示例10: add_training_operators

# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import DeviceScope [as 別名]
def add_training_operators(output_segmentation, model, device_opts) :

    with core.DeviceScope(device_opts):
        loss = model.SigmoidCrossEntropyWithLogits([output_segmentation, "gt_segmentation"], 'loss')
        avg_loss = model.AveragedLoss(loss, "avg_loss")
        model.AddGradientOperators([loss])
        opt = optimizer.build_adam(model, base_learning_rate=0.01) 
開發者ID:peterneher,項目名稱:peters-stuff,代碼行數:9,代碼來源:segmentation_no_db_example.py

示例11: train

# 需要導入模塊: from caffe2.python import core [as 別名]
# 或者: from caffe2.python.core import DeviceScope [as 別名]
def train(INIT_NET, PREDICT_NET, epochs, batch_size, device_opts) :

    data, gt_segmentation = get_data(batch_size)
    workspace.FeedBlob("data", data, device_option=device_opts)
    workspace.FeedBlob("gt_segmentation", gt_segmentation, device_option=device_opts)

    train_model= model_helper.ModelHelper(name="train_net", arg_scope = {"order": "NHWC"})
    output_segmentation = create_unet_model(train_model, device_opts=device_opts, is_test=0)
    add_training_operators(output_segmentation, train_model, device_opts=device_opts)
    with core.DeviceScope(device_opts):
        brew.add_weight_decay(train_model, 0.001)

    workspace.RunNetOnce(train_model.param_init_net)
    workspace.CreateNet(train_model.net)

    print '\ntraining for', epochs, 'epochs'
    for j in range(0, epochs):
        data, gt_segmentation = get_data(batch_size, 4)

        workspace.FeedBlob("data", data, device_option=device_opts)
        workspace.FeedBlob("gt_segmentation", gt_segmentation, device_option=device_opts)

        workspace.RunNet(train_model.net, 1)   # run for 10 times
        print str(j) + ': ' + str(workspace.FetchBlob("avg_loss"))

    print 'training done'
    test_model= model_helper.ModelHelper(name="test_net", arg_scope = {"order": "NHWC"}, init_params=False)
    create_unet_model(test_model, device_opts=device_opts, is_test=1)
    workspace.RunNetOnce(test_model.param_init_net)
    workspace.CreateNet(test_model.net, overwrite=True)

    print '\nsaving test model'
    save_net(INIT_NET, PREDICT_NET, test_model) 
開發者ID:peterneher,項目名稱:peters-stuff,代碼行數:35,代碼來源:segmentation_no_db_example.py


注:本文中的caffe2.python.core.DeviceScope方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。