本文整理匯總了Python中caffe2.proto.caffe2_pb2.NetDef方法的典型用法代碼示例。如果您正苦於以下問題:Python caffe2_pb2.NetDef方法的具體用法?Python caffe2_pb2.NetDef怎麽用?Python caffe2_pb2.NetDef使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類caffe2.proto.caffe2_pb2
的用法示例。
在下文中一共展示了caffe2_pb2.NetDef方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_model_pb
# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import NetDef [as 別名]
def load_model_pb(net_file, init_file=None, is_run_init=True, is_create_net=True):
net = core.Net("net")
if net_file is not None:
net.Proto().ParseFromString(open(net_file, "rb").read())
if init_file is None:
fn, ext = os.path.splitext(net_file)
init_file = fn + "_init" + ext
init_net = caffe2_pb2.NetDef()
init_net.ParseFromString(open(init_file, "rb").read())
if is_run_init:
workspace.RunNetOnce(init_net)
create_blobs_if_not_existed(net.external_inputs)
if net.Proto().name == "":
net.Proto().name = "net"
if is_create_net:
workspace.CreateNet(net)
return (net, init_net)
示例2: gen_init_net_from_blobs
# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import NetDef [as 別名]
def gen_init_net_from_blobs(blobs, blobs_to_use=None, excluded_blobs=None):
''' Generate an initialization net based on a blob dict '''
ret = caffe2_pb2.NetDef()
if blobs_to_use is None:
blobs_to_use = {x for x in blobs}
else:
blobs_to_use = copy.deepcopy(blobs_to_use)
if excluded_blobs is not None:
blobs_to_use = [x for x in blobs_to_use if x not in excluded_blobs]
for name in blobs_to_use:
blob = blobs[name]
if isinstance(blob, str):
print('Blob {} with type {} is not supported in generating init net,'
' skipped.'.format(name, type(blob)))
continue
add_tensor(ret, name, blob)
return ret
示例3: _propagate_device_option
# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import NetDef [as 別名]
def _propagate_device_option(net_def):
'''
Propagate the device options from net to operators.
Args:
net_def: A caffe2_pb2.NetDef representing a computation graph. The graph
consists of Caffe2 operators.
Returns:
None. Iterates through all ops contained within the net. For each op,
modifies the op device_option in-place to be the net device_option
if the op has no pre-existing device_option, and leaves the op as-is
if it already has a device_option.
'''
if not net_def.HasField("device_option"):
return
for op in net_def.op:
if not op.HasField("device_option"):
op.device_option.CopyFrom(net_def.device_option)
示例4: nets_to_graph_def
# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import NetDef [as 別名]
def nets_to_graph_def(nets, shapes=None, **kwargs):
'''
Convert a set of Caffe2 nets to a Tensorflow graph.
Args:
nets: List of core.Nets. core.Net is a wrapper around a NetDef protobuf.
The corresponding protobuf can be extracted using .Proto().
shapes: Dictionary mapping blob names to their shapes/dimensions.
Returns:
Call to protos_to_graph_def() with the extracted NetDef protobufs and
**kwargs. See _operators_to_graph_def for detailed **kwargs.
'''
# if shapes is None:
# shapes = _try_get_shapes(nets)
# _try_get_shapes(nets) depends on workspace.InferShapesAndTypes(nets),
# which is currently broken (segfault). We omit the shapes for now.
shapes = {}
nets = [copy.deepcopy(net.Proto()) for net in nets]
shapes = copy.deepcopy(shapes)
return protos_to_graph_def(nets, shapes, **kwargs)
示例5: protos_to_graph_def
# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import NetDef [as 別名]
def protos_to_graph_def(net_defs, shapes=None, **kwargs):
'''
Convert a set of Caffe2 net definitions to a Tensorflow graph.
Args:
net_defs: List of caffe2_pb2.NetDef protobufs representing computation
graphs.
shapes: Dictionary mapping blob names to their shapes/dimensions.
Returns:
Call to _operators_to_graph_def() with the extracted operators from the
NetDefs and **kwargs. See _operators_to_graph_def for detailed
**kwargs.
'''
for net in net_defs:
_propagate_device_option(net)
shapes = copy.deepcopy(shapes or {})
ops = [op for net_def in net_defs for op in net_def.op]
return _operators_to_graph_def(shapes, ops, **kwargs)
示例6: ConvertTensorProtosToInitNet
# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import NetDef [as 別名]
def ConvertTensorProtosToInitNet(net_params, input_name):
"""Takes the net_params returned from TranslateModel, and wrap it as an
init net that contain GivenTensorFill.
This is a very simple feature that only works with float tensors, and is
only intended to be used in an environment where you want a single
initialization file - for more complex cases, use a db to store the
parameters.
"""
init_net = caffe2_pb2.NetDef()
for tensor in net_params.protos:
if len(tensor.float_data) == 0:
raise RuntimeError(
"Only float tensors are supported in this util.")
op = core.CreateOperator(
"GivenTensorFill", [], [tensor.name],
arg=[
utils.MakeArgument("shape", list(tensor.dims)),
utils.MakeArgument("values", tensor.float_data)])
init_net.op.extend([op])
init_net.op.extend([core.CreateOperator("ConstantFill", [], [input_name], shape=[1])])
return init_net
示例7: __init__
# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import NetDef [as 別名]
def __init__(self, predict_net, init_net):
logger.info("Initializing ProtobufModel ...")
super().__init__()
assert isinstance(predict_net, caffe2_pb2.NetDef)
assert isinstance(init_net, caffe2_pb2.NetDef)
self.ws_name = "__ws_tmp__"
self.net = core.Net(predict_net)
with ScopedWS(self.ws_name, is_reset=True, is_cleanup=False) as ws:
ws.RunNetOnce(init_net)
for blob in self.net.Proto().external_input:
if blob not in ws.Blobs():
ws.CreateBlob(blob)
ws.CreateNet(self.net)
self._error_msgs = set()
示例8: construct_init_net_from_params
# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import NetDef [as 別名]
def construct_init_net_from_params(
params: Dict[str, Any], device_options: Optional[Dict[str, caffe2_pb2.DeviceOption]] = None
) -> caffe2_pb2.NetDef:
"""
Construct the init_net from params dictionary
"""
init_net = caffe2_pb2.NetDef()
device_options = device_options or {}
for name, blob in params.items():
if isinstance(blob, str):
logger.warning(
(
"Blob {} with type {} is not supported in generating init net,"
" skipped.".format(name, type(blob))
)
)
continue
init_net.op.extend(
[create_const_fill_op(name, blob, device_option=device_options.get(name, None))]
)
init_net.external_output.append(name)
return init_net
示例9: rename_op_output
# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import NetDef [as 別名]
def rename_op_output(predict_net: caffe2_pb2.NetDef, op_id: int, output_id: int, new_name: str):
"""
Rename the op_id-th operator in predict_net, change it's output_id-th input's
name to the new_name. It also does automatic re-route and change
external_output and if necessary.
- It allows multiple consumers of its output.
- This function modifies predict_net in-place, doesn't need init_net.
"""
assert isinstance(predict_net, caffe2_pb2.NetDef)
ssa, blob_versions = core.get_ssa(predict_net)
versioned_inputs, versioned_outputs = ssa[op_id]
old_name, version = versioned_outputs[output_id]
# update predict_net
_rename_versioned_blob_in_proto(
predict_net, old_name, new_name, version, ssa, {}, blob_versions
)
示例10: identify_reshape_sub_graph
# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import NetDef [as 別名]
def identify_reshape_sub_graph(predict_net: caffe2_pb2.NetDef) -> List[List[int]]:
"""
Idenfity the reshape sub-graph in a protobuf.
The reshape sub-graph is defined as matching the following pattern:
(input_blob) -> Op_1 -> ... -> Op_N -> (new_shape) -─┐
└-------------------------------------------> Reshape -> (output_blob)
Return:
List of sub-graphs, each sub-graph is represented as a list of indices
of the relavent ops, [Op_1, Op_2, ..., Op_N, Reshape]
"""
ssa, _ = core.get_ssa(predict_net)
ret = []
for i, op in enumerate(predict_net.op):
if op.type == "Reshape":
assert len(op.input) == 2
input_ssa = ssa[i][0]
data_source = input_ssa[0]
shape_source = input_ssa[1]
op_indices = _get_dependency_chain(ssa, shape_source, data_source)
ret.append(op_indices + [i])
return ret
示例11: remove_dead_end_ops
# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import NetDef [as 別名]
def remove_dead_end_ops(net_def: caffe2_pb2.NetDef):
""" remove ops if its output is not used or not in external_output """
ssa, versions = core.get_ssa(net_def)
versioned_external_output = [(name, versions[name]) for name in net_def.external_output]
consumer_map = get_consumer_map(ssa)
removed_op_ids = set()
def _is_dead_end(versioned_blob):
return not (
versioned_blob in versioned_external_output
or (
len(consumer_map[versioned_blob]) > 0
and all(x[0] not in removed_op_ids for x in consumer_map[versioned_blob])
)
)
for i, ssa_i in reversed(list(enumerate(ssa))):
versioned_outputs = ssa_i[1]
if all(_is_dead_end(outp) for outp in versioned_outputs):
removed_op_ids.add(i)
# simply removing those deadend ops should have no effect to external_output
new_ops = [op for i, op in enumerate(net_def.op) if i not in removed_op_ids]
del net_def.op[:]
net_def.op.extend(new_ops)
示例12: caffe2_to_onnx
# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import NetDef [as 別名]
def caffe2_to_onnx(caffe2_model_name, caffe2_model_dir):
caffe2_init_proto = caffe2_pb2.NetDef()
caffe2_predict_proto = caffe2_pb2.NetDef()
with open(os.path.join(caffe2_model_dir, 'init_net.pb'), 'rb') as f:
caffe2_init_proto.ParseFromString(f.read())
caffe2_init_proto.name = '{}_init'.format(caffe2_model_name)
with open(os.path.join(caffe2_model_dir, 'predict_net.pb'), 'rb') as f:
caffe2_predict_proto.ParseFromString(f.read())
caffe2_predict_proto.name = caffe2_model_name
with open(os.path.join(caffe2_model_dir, 'value_info.json'), 'rb') as f:
value_info = json.loads(f.read())
print('Converting Caffe2 model {} in {} to ONNX format'.format(caffe2_model_name, caffe2_model_dir))
onnx_model = caffe2.python.onnx.frontend.caffe2_net_to_onnx_model(
init_net=caffe2_init_proto,
predict_net=caffe2_predict_proto,
value_info=value_info
)
return onnx_model, caffe2_init_proto, caffe2_predict_proto
示例13: write_graph
# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import NetDef [as 別名]
def write_graph(self, model_or_nets_or_protos=None, **kwargs):
'''Write graph to the summary.'''
if isinstance(model_or_nets_or_protos, cnn.CNNModelHelper):
current_graph, track_blob_names = model_to_graph(model_or_nets_or_protos, **kwargs)
elif isinstance(model_or_nets_or_protos, list):
if isinstance(model_or_nets_or_protos[0], core.Net):
current_graph, track_blob_names = nets_to_graph(model_or_nets_or_protos, **kwargs)
elif isinstance(model_or_nets_or_protos[0], caffe2_pb2.NetDef):
current_graph, track_blob_names = protos_to_graph(model_or_nets_or_protos, **kwargs)
else:
raise NotImplementedError
else:
raise NotImplementedError
self._file_writer.add_graph(current_graph)
self._track_blob_names = track_blob_names
# Once the graph is built, one can just map the blobs
self.check_names()
self.sort_out_names()
示例14: main
# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import NetDef [as 別名]
def main():
args = make_args()
config = configparser.ConfigParser()
utils.load_config(config, args.config)
for cmd in args.modify:
utils.modify_config(config, cmd)
with open(os.path.expanduser(os.path.expandvars(args.logging)), 'r') as f:
logging.config.dictConfig(yaml.load(f))
torch.manual_seed(args.seed)
model_dir = utils.get_model_dir(config)
init_net = caffe2_pb2.NetDef()
with open(os.path.join(model_dir, 'init_net.pb'), 'rb') as f:
init_net.ParseFromString(f.read())
predict_net = caffe2_pb2.NetDef()
with open(os.path.join(model_dir, 'predict_net.pb'), 'rb') as f:
predict_net.ParseFromString(f.read())
p = workspace.Predictor(init_net, predict_net)
height, width = tuple(map(int, config.get('image', 'size').split()))
tensor = torch.randn(1, 3, height, width)
# Checksum
output = p.run([tensor.numpy()])
for key, a in [
('tensor', tensor.cpu().numpy()),
('output', output[0]),
]:
print('\t'.join(map(str, [key, a.shape, utils.abs_mean(a), hashlib.md5(a.tostring()).hexdigest()])))
示例15: main
# 需要導入模塊: from caffe2.proto import caffe2_pb2 [as 別名]
# 或者: from caffe2.proto.caffe2_pb2 import NetDef [as 別名]
def main():
args = parser.parse_args()
args.gpu_id = 0
model = model_helper.ModelHelper(name="le_net", init_params=False)
# Bring in the init net from init_net.pb
init_net_proto = caffe2_pb2.NetDef()
with open(args.c2_init, "rb") as f:
init_net_proto.ParseFromString(f.read())
model.param_init_net = core.Net(init_net_proto) # model.param_init_net.AppendNet(core.Net(init_net_proto)) #
# bring in the predict net from predict_net.pb
predict_net_proto = caffe2_pb2.NetDef()
with open(args.c2_predict, "rb") as f:
predict_net_proto.ParseFromString(f.read())
model.net = core.Net(predict_net_proto) # model.net.AppendNet(core.Net(predict_net_proto))
# CUDA performance not impressive
#device_opts = core.DeviceOption(caffe2_pb2.PROTO_CUDA, args.gpu_id)
#model.net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
#model.param_init_net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
input_blob = model.net.external_inputs[0]
model.param_init_net.GaussianFill(
[],
input_blob.GetUnscopedName(),
shape=(args.batch_size, 3, args.img_size, args.img_size),
mean=0.0,
std=1.0)
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net, overwrite=True)
workspace.BenchmarkNet(model.net.Proto().name, 5, 20, True)