本文整理匯總了Python中caffe.proto.caffe_pb2.Datum方法的典型用法代碼示例。如果您正苦於以下問題:Python caffe_pb2.Datum方法的具體用法?Python caffe_pb2.Datum怎麽用?Python caffe_pb2.Datum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類caffe.proto.caffe_pb2
的用法示例。
在下文中一共展示了caffe_pb2.Datum方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: array_to_datum
# 需要導入模塊: from caffe.proto import caffe_pb2 [as 別名]
# 或者: from caffe.proto.caffe_pb2 import Datum [as 別名]
def array_to_datum(arr, label=None):
"""Converts a 3-dimensional array to datum. If the array has dtype uint8,
the output data will be encoded as a string. Otherwise, the output data
will be stored in float format.
"""
if arr.ndim != 3:
raise ValueError('Incorrect array shape.')
datum = caffe_pb2.Datum()
datum.channels, datum.height, datum.width = arr.shape
if arr.dtype == np.uint8:
datum.data = arr.tostring()
else:
datum.float_data.extend(arr.astype(float).flat)
if label is not None:
datum.label = label
return datum
示例2: array_to_datum
# 需要導入模塊: from caffe.proto import caffe_pb2 [as 別名]
# 或者: from caffe.proto.caffe_pb2 import Datum [as 別名]
def array_to_datum(arr, label=None):
"""Converts a 3-dimensional array to datum. If the array has dtype uint8,
the output data will be encoded as a string. Otherwise, the output data
will be stored in float format.
"""
if arr.ndim != 3:
raise ValueError('Incorrect array shape.')
datum = caffe_pb2.Datum()
datum.channels, datum.height, datum.width = arr.shape
if arr.dtype == np.uint8:
datum.data = arr.tostring()
else:
datum.float_data.extend(arr.flat)
if label is not None:
datum.label = label
return datum
示例3: ReadPatches
# 需要導入模塊: from caffe.proto import caffe_pb2 [as 別名]
# 或者: from caffe.proto.caffe_pb2 import Datum [as 別名]
def ReadPatches(db, pairs, patch_height=64, patch_width=64):
"""Read patches from the given db handle. Each element in pairs is a
pair of keys.
Returns
-------
Two N * 1 * W * H array in a list, where N is the number of pairs.
"""
N = len(pairs)
patches = [np.zeros((N, 1, patch_height, patch_width),
dtype=np.float),
np.zeros((N, 1, patch_height, patch_width),
dtype=np.float)]
idx = 0 # Index to the next available patch in the patch array.
parity = 0
for pair in pairs:
for key in pair:
datum = caffe_pb2.Datum()
datum.ParseFromString(db.Get(key))
patches[parity][idx, 0, :, :] = \
np.fromstring(datum.data, np.uint8).reshape(
patch_height, patch_width)
parity = 1 - parity
idx += 1
return patches
示例4: array_to_datum
# 需要導入模塊: from caffe.proto import caffe_pb2 [as 別名]
# 或者: from caffe.proto.caffe_pb2 import Datum [as 別名]
def array_to_datum(arr, label=0):
"""Converts a 3-dimensional array to datum. If the array has dtype uint8,
the output data will be encoded as a string. Otherwise, the output data
will be stored in float format.
"""
if arr.ndim != 3:
raise ValueError('Incorrect array shape.')
datum = caffe_pb2.Datum()
datum.channels, datum.height, datum.width = arr.shape
if arr.dtype == np.uint8:
datum.data = arr.tostring()
else:
datum.float_data.extend(arr.flat)
datum.label = label
return datum
示例5: forward
# 需要導入模塊: from caffe.proto import caffe_pb2 [as 別名]
# 或者: from caffe.proto.caffe_pb2 import Datum [as 別名]
def forward(self):
return "mock this"
# class io:
# @staticmethod
# def array_to_datum(s):
# return Datum()
示例6: main
# 需要導入模塊: from caffe.proto import caffe_pb2 [as 別名]
# 或者: from caffe.proto.caffe_pb2 import Datum [as 別名]
def main():
# Parse input arguments.
args = ParseArgs()
# Read the 3Dpoint IDs from the info file.
with open(args.info_file) as f:
point_id = [int(line.split()[0]) for line in f]
# Read the interest point from the interest file. The fields in each line
# are: image_id, x, y, orientation, and scale. We parse all of them as float
# even though image_id is integer.
with open(args.interest_file) as f:
interest = [[float(x) for x in line.split()] for line in f]
# Create the output database, fail if exists.
db = leveldb.LevelDB(args.output_db,
create_if_missing=True,
error_if_exists=True)
# Add patches to the database in batch.
batch = leveldb.WriteBatch()
total = len(interest)
processed = 0
for i, metadata in enumerate(interest):
datum = caffe_pb2.Datum()
datum.channels, datum.height, datum.width = (1, 64, 64)
# Extract the patch
datum.data = GetPatchImage(i, args.container_dir).tostring()
# Write 3D point ID into the label field.
datum.label = point_id[i]
# Write other metadata into float_data fields.
datum.float_data.extend(metadata)
batch.Put(str(i), datum.SerializeToString())
processed += 1
if processed % 1000 == 0:
print processed, '/', total
# Write the current batch.
db.Write(batch, sync=True)
# Verify the last written record.
d = caffe_pb2.Datum()
d.ParseFromString(db.Get(str(processed - 1)))
assert (d.data == datum.data)
# Start a new batch
batch = leveldb.WriteBatch()
db.Write(batch, sync=True)