本文整理匯總了Python中caffe.proto.caffe_pb2.BlobProto方法的典型用法代碼示例。如果您正苦於以下問題:Python caffe_pb2.BlobProto方法的具體用法?Python caffe_pb2.BlobProto怎麽用?Python caffe_pb2.BlobProto使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類caffe.proto.caffe_pb2
的用法示例。
在下文中一共展示了caffe_pb2.BlobProto方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: add_missing_biases
# 需要導入模塊: from caffe.proto import caffe_pb2 [as 別名]
# 或者: from caffe.proto.caffe_pb2 import BlobProto [as 別名]
def add_missing_biases(caffenet_weights):
for layer in caffenet_weights.layer:
if layer.type == 'Convolution' and len(layer.blobs) == 1:
num_filters = layer.blobs[0].shape.dim[0]
bias_blob = caffe_pb2.BlobProto()
bias_blob.data.extend(np.zeros(num_filters))
bias_blob.num, bias_blob.channels, bias_blob.height = 1, 1, 1
bias_blob.width = num_filters
layer.blobs.extend([bias_blob])
示例2: array_to_blobproto
# 需要導入模塊: from caffe.proto import caffe_pb2 [as 別名]
# 或者: from caffe.proto.caffe_pb2 import BlobProto [as 別名]
def array_to_blobproto(arr, diff=None):
"""Converts a 4-dimensional array to blob proto. If diff is given, also
convert the diff. You need to make sure that arr and diff have the same
shape, and this function does not do sanity check.
"""
if arr.ndim != 4:
raise ValueError('Incorrect array shape.')
blob = caffe_pb2.BlobProto()
blob.num, blob.channels, blob.height, blob.width = arr.shape
blob.data.extend(arr.astype(float).flat)
if diff is not None:
blob.diff.extend(diff.astype(float).flat)
return blob
示例3: array_to_blobproto
# 需要導入模塊: from caffe.proto import caffe_pb2 [as 別名]
# 或者: from caffe.proto.caffe_pb2 import BlobProto [as 別名]
def array_to_blobproto(arr, diff=None):
"""Converts a N-dimensional array to blob proto. If diff is given, also
convert the diff. You need to make sure that arr and diff have the same
shape, and this function does not do sanity check.
"""
blob = caffe_pb2.BlobProto()
blob.shape.dim.extend(arr.shape)
blob.data.extend(arr.astype(float).flat)
if diff is not None:
blob.diff.extend(diff.astype(float).flat)
return blob
示例4: load_mean_bgr
# 需要導入模塊: from caffe.proto import caffe_pb2 [as 別名]
# 或者: from caffe.proto.caffe_pb2 import BlobProto [as 別名]
def load_mean_bgr():
""" bgr mean pixel value image, [0, 255]. [height, width, 3] """
with open("data/ResNet_mean.binaryproto", mode='rb') as f:
data = f.read()
blob = caffe_pb2.BlobProto()
blob.ParseFromString(data)
mean_bgr = caffe.io.blobproto_to_array(blob)[0]
assert mean_bgr.shape == (3, 224, 224)
return mean_bgr.transpose((1, 2, 0))
示例5: get_transformer
# 需要導入模塊: from caffe.proto import caffe_pb2 [as 別名]
# 或者: from caffe.proto.caffe_pb2 import BlobProto [as 別名]
def get_transformer(deploy_file, mean_file=None):
"""
Returns an instance of caffe.io.Transformer
Arguments:
deploy_file -- path to a .prototxt file
Keyword arguments:
mean_file -- path to a .binaryproto file (optional)
"""
network = caffe_pb2.NetParameter()
with open(deploy_file) as infile:
text_format.Merge(infile.read(), network)
dims = network.input_dim
t = caffe.io.Transformer(
inputs = {'data': dims}
)
t.set_transpose('data', (2,0,1)) # transpose to (channels, height, width)
# color images
if dims[1] == 3:
# channel swap
t.set_channel_swap('data', (2,1,0))
if mean_file:
# set mean pixel
with open(mean_file) as infile:
blob = caffe_pb2.BlobProto()
blob.MergeFromString(infile.read())
if blob.HasField('shape'):
blob_dims = blob.shape
assert len(blob_dims) == 4, 'Shape should have 4 dimensions - shape is "%s"' % blob.shape
elif blob.HasField('num') and blob.HasField('channels') and \
blob.HasField('height') and blob.HasField('width'):
blob_dims = (blob.num, blob.channels, blob.height, blob.width)
else:
raise ValueError('blob does not provide shape or 4d dimensions')
pixel = np.reshape(blob.data, blob_dims[1:]).mean(1).mean(1)
t.set_mean('data', pixel)
return t