當前位置: 首頁>>代碼示例>>Python>>正文


Python builtins.float方法代碼示例

本文整理匯總了Python中builtins.float方法的典型用法代碼示例。如果您正苦於以下問題:Python builtins.float方法的具體用法?Python builtins.float怎麽用?Python builtins.float使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在builtins的用法示例。


在下文中一共展示了builtins.float方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: has_nested_fields

# 需要導入模塊: import builtins [as 別名]
# 或者: from builtins import float [as 別名]
def has_nested_fields(ndtype):
    """
    Returns whether one or several fields of a dtype are nested.

    Parameters
    ----------
    ndtype : dtype
        Data-type of a structured array.

    Raises
    ------
    AttributeError
        If `ndtype` does not have a `names` attribute.

    Examples
    --------
    >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)])
    >>> np.lib._iotools.has_nested_fields(dt)
    False

    """
    for name in ndtype.names or ():
        if ndtype[name].names:
            return True
    return False 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:27,代碼來源:_iotools.py

示例2: _set_array_types

# 需要導入模塊: import builtins [as 別名]
# 或者: from builtins import float [as 別名]
def _set_array_types():
    ibytes = [1, 2, 4, 8, 16, 32, 64]
    fbytes = [2, 4, 8, 10, 12, 16, 32, 64]
    for bytes in ibytes:
        bits = 8*bytes
        _add_array_type('int', bits)
        _add_array_type('uint', bits)
    for bytes in fbytes:
        bits = 8*bytes
        _add_array_type('float', bits)
        _add_array_type('complex', 2*bits)
    _gi = dtype('p')
    if _gi.type not in sctypes['int']:
        indx = 0
        sz = _gi.itemsize
        _lst = sctypes['int']
        while (indx < len(_lst) and sz >= _lst[indx](0).itemsize):
            indx += 1
        sctypes['int'].insert(indx, _gi.type)
        sctypes['uint'].insert(indx, dtype('P').type) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:numerictypes.py

示例3: assert_bounded

# 需要導入模塊: import builtins [as 別名]
# 或者: from builtins import float [as 別名]
def assert_bounded(val, lower=None, upper=None, msg=None):
    '''Assert that ``lower <= val <= upper``.

    :arg val: The value to check.
    :arg lower: The lower bound. If ``None``, it defaults to ``-inf``.
    :arg upper: The upper bound. If ``None``, it defaults to ``inf``.
    :returns: ``True`` on success.
    :raises reframe.core.exceptions.SanityError: if assertion fails.
    '''
    if lower is None:
        lower = builtins.float('-inf')

    if upper is None:
        upper = builtins.float('inf')

    if val >= lower and val <= upper:
        return True

    error_msg = msg or 'value {0} not within bounds {1}..{2}'
    raise SanityError(_format(error_msg, val, lower, upper)) 
開發者ID:eth-cscs,項目名稱:reframe,代碼行數:22,代碼來源:sanity.py

示例4: set_dataframe_column_dtypes

# 需要導入模塊: import builtins [as 別名]
# 或者: from builtins import float [as 別名]
def set_dataframe_column_dtypes(df, dtypes):
    """
    A method to set column datatypes for a Pandas dataframe

    :param df: The dataframe to process
    :type df: pd.DataFrame

    :param dtypes: A dict of column names and corresponding Numpy datatypes -
                   Python built-in datatypes can be passed in but they will be
                   mapped to the corresponding Numpy datatypes
    :type dtypes: dict

    :return: The processed dataframe with column datatypes set
    :rtype: pandas.DataFrame
    """
    existing_cols = list(set(dtypes).intersection(df.columns))
    _dtypes = {
        col: PANDAS_BASIC_DTYPES[getattr(builtins, dtype) if dtype in ('int', 'bool', 'float', 'object', 'str',) else dtype]
        for col, dtype in [(_col, dtypes[_col]) for _col in existing_cols]
    }
    df = df.astype(_dtypes)

    return df 
開發者ID:OasisLMF,項目名稱:OasisLMF,代碼行數:25,代碼來源:data.py

示例5: flatten_dtype

# 需要導入模塊: import builtins [as 別名]
# 或者: from builtins import float [as 別名]
def flatten_dtype(ndtype, flatten_base=False):
    """
    Unpack a structured data-type by collapsing nested fields and/or fields
    with a shape.

    Note that the field names are lost.

    Parameters
    ----------
    ndtype : dtype
        The datatype to collapse
    flatten_base : bool, optional
       If True, transform a field with a shape into several fields. Default is
       False.

    Examples
    --------
    >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
    ...                ('block', int, (2, 3))])
    >>> np.lib._iotools.flatten_dtype(dt)
    [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32')]
    >>> np.lib._iotools.flatten_dtype(dt, flatten_base=True)
    [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32'),
     dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32'),
     dtype('int32')]

    """
    names = ndtype.names
    if names is None:
        if flatten_base:
            return [ndtype.base] * int(np.prod(ndtype.shape))
        return [ndtype.base]
    else:
        types = []
        for field in names:
            info = ndtype.fields[field]
            flat_dt = flatten_dtype(info[0], flatten_base)
            types.extend(flat_dt)
        return types 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:41,代碼來源:_iotools.py

示例6: issubclass_

# 需要導入模塊: import builtins [as 別名]
# 或者: from builtins import float [as 別名]
def issubclass_(arg1, arg2):
    """
    Determine if a class is a subclass of a second class.

    `issubclass_` is equivalent to the Python built-in ``issubclass``,
    except that it returns False instead of raising a TypeError if one
    of the arguments is not a class.

    Parameters
    ----------
    arg1 : class
        Input class. True is returned if `arg1` is a subclass of `arg2`.
    arg2 : class or tuple of classes.
        Input class. If a tuple of classes, True is returned if `arg1` is a
        subclass of any of the tuple elements.

    Returns
    -------
    out : bool
        Whether `arg1` is a subclass of `arg2` or not.

    See Also
    --------
    issubsctype, issubdtype, issctype

    Examples
    --------
    >>> np.issubclass_(np.int32, int)
    True
    >>> np.issubclass_(np.int32, float)
    False

    """
    try:
        return issubclass(arg1, arg2)
    except TypeError:
        return False 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:39,代碼來源:numerictypes.py

示例7: issubsctype

# 需要導入模塊: import builtins [as 別名]
# 或者: from builtins import float [as 別名]
def issubsctype(arg1, arg2):
    """
    Determine if the first argument is a subclass of the second argument.

    Parameters
    ----------
    arg1, arg2 : dtype or dtype specifier
        Data-types.

    Returns
    -------
    out : bool
        The result.

    See Also
    --------
    issctype, issubdtype,obj2sctype

    Examples
    --------
    >>> np.issubsctype('S8', str)
    True
    >>> np.issubsctype(np.array([1]), int)
    True
    >>> np.issubsctype(np.array([1]), float)
    False

    """
    return issubclass(obj2sctype(arg1), obj2sctype(arg2)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:31,代碼來源:numerictypes.py


注:本文中的builtins.float方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。