本文整理匯總了Python中builtins.float方法的典型用法代碼示例。如果您正苦於以下問題:Python builtins.float方法的具體用法?Python builtins.float怎麽用?Python builtins.float使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類builtins
的用法示例。
在下文中一共展示了builtins.float方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: has_nested_fields
# 需要導入模塊: import builtins [as 別名]
# 或者: from builtins import float [as 別名]
def has_nested_fields(ndtype):
"""
Returns whether one or several fields of a dtype are nested.
Parameters
----------
ndtype : dtype
Data-type of a structured array.
Raises
------
AttributeError
If `ndtype` does not have a `names` attribute.
Examples
--------
>>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)])
>>> np.lib._iotools.has_nested_fields(dt)
False
"""
for name in ndtype.names or ():
if ndtype[name].names:
return True
return False
示例2: _set_array_types
# 需要導入模塊: import builtins [as 別名]
# 或者: from builtins import float [as 別名]
def _set_array_types():
ibytes = [1, 2, 4, 8, 16, 32, 64]
fbytes = [2, 4, 8, 10, 12, 16, 32, 64]
for bytes in ibytes:
bits = 8*bytes
_add_array_type('int', bits)
_add_array_type('uint', bits)
for bytes in fbytes:
bits = 8*bytes
_add_array_type('float', bits)
_add_array_type('complex', 2*bits)
_gi = dtype('p')
if _gi.type not in sctypes['int']:
indx = 0
sz = _gi.itemsize
_lst = sctypes['int']
while (indx < len(_lst) and sz >= _lst[indx](0).itemsize):
indx += 1
sctypes['int'].insert(indx, _gi.type)
sctypes['uint'].insert(indx, dtype('P').type)
示例3: assert_bounded
# 需要導入模塊: import builtins [as 別名]
# 或者: from builtins import float [as 別名]
def assert_bounded(val, lower=None, upper=None, msg=None):
'''Assert that ``lower <= val <= upper``.
:arg val: The value to check.
:arg lower: The lower bound. If ``None``, it defaults to ``-inf``.
:arg upper: The upper bound. If ``None``, it defaults to ``inf``.
:returns: ``True`` on success.
:raises reframe.core.exceptions.SanityError: if assertion fails.
'''
if lower is None:
lower = builtins.float('-inf')
if upper is None:
upper = builtins.float('inf')
if val >= lower and val <= upper:
return True
error_msg = msg or 'value {0} not within bounds {1}..{2}'
raise SanityError(_format(error_msg, val, lower, upper))
示例4: set_dataframe_column_dtypes
# 需要導入模塊: import builtins [as 別名]
# 或者: from builtins import float [as 別名]
def set_dataframe_column_dtypes(df, dtypes):
"""
A method to set column datatypes for a Pandas dataframe
:param df: The dataframe to process
:type df: pd.DataFrame
:param dtypes: A dict of column names and corresponding Numpy datatypes -
Python built-in datatypes can be passed in but they will be
mapped to the corresponding Numpy datatypes
:type dtypes: dict
:return: The processed dataframe with column datatypes set
:rtype: pandas.DataFrame
"""
existing_cols = list(set(dtypes).intersection(df.columns))
_dtypes = {
col: PANDAS_BASIC_DTYPES[getattr(builtins, dtype) if dtype in ('int', 'bool', 'float', 'object', 'str',) else dtype]
for col, dtype in [(_col, dtypes[_col]) for _col in existing_cols]
}
df = df.astype(_dtypes)
return df
示例5: flatten_dtype
# 需要導入模塊: import builtins [as 別名]
# 或者: from builtins import float [as 別名]
def flatten_dtype(ndtype, flatten_base=False):
"""
Unpack a structured data-type by collapsing nested fields and/or fields
with a shape.
Note that the field names are lost.
Parameters
----------
ndtype : dtype
The datatype to collapse
flatten_base : bool, optional
If True, transform a field with a shape into several fields. Default is
False.
Examples
--------
>>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
... ('block', int, (2, 3))])
>>> np.lib._iotools.flatten_dtype(dt)
[dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32')]
>>> np.lib._iotools.flatten_dtype(dt, flatten_base=True)
[dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32'),
dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32'),
dtype('int32')]
"""
names = ndtype.names
if names is None:
if flatten_base:
return [ndtype.base] * int(np.prod(ndtype.shape))
return [ndtype.base]
else:
types = []
for field in names:
info = ndtype.fields[field]
flat_dt = flatten_dtype(info[0], flatten_base)
types.extend(flat_dt)
return types
示例6: issubclass_
# 需要導入模塊: import builtins [as 別名]
# 或者: from builtins import float [as 別名]
def issubclass_(arg1, arg2):
"""
Determine if a class is a subclass of a second class.
`issubclass_` is equivalent to the Python built-in ``issubclass``,
except that it returns False instead of raising a TypeError if one
of the arguments is not a class.
Parameters
----------
arg1 : class
Input class. True is returned if `arg1` is a subclass of `arg2`.
arg2 : class or tuple of classes.
Input class. If a tuple of classes, True is returned if `arg1` is a
subclass of any of the tuple elements.
Returns
-------
out : bool
Whether `arg1` is a subclass of `arg2` or not.
See Also
--------
issubsctype, issubdtype, issctype
Examples
--------
>>> np.issubclass_(np.int32, int)
True
>>> np.issubclass_(np.int32, float)
False
"""
try:
return issubclass(arg1, arg2)
except TypeError:
return False
示例7: issubsctype
# 需要導入模塊: import builtins [as 別名]
# 或者: from builtins import float [as 別名]
def issubsctype(arg1, arg2):
"""
Determine if the first argument is a subclass of the second argument.
Parameters
----------
arg1, arg2 : dtype or dtype specifier
Data-types.
Returns
-------
out : bool
The result.
See Also
--------
issctype, issubdtype,obj2sctype
Examples
--------
>>> np.issubsctype('S8', str)
True
>>> np.issubsctype(np.array([1]), int)
True
>>> np.issubsctype(np.array([1]), float)
False
"""
return issubclass(obj2sctype(arg1), obj2sctype(arg2))