本文整理匯總了Python中bottleneck.nanmin方法的典型用法代碼示例。如果您正苦於以下問題:Python bottleneck.nanmin方法的具體用法?Python bottleneck.nanmin怎麽用?Python bottleneck.nanmin使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類bottleneck
的用法示例。
在下文中一共展示了bottleneck.nanmin方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: quickMinMax
# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import nanmin [as 別名]
def quickMinMax(self, data):
"""
Estimate the min/max values of *data* by subsampling.
Returns [(min, max), ...] with one item per channel
"""
while data.size > 1e6:
ax = np.argmax(data.shape)
sl = [slice(None)] * data.ndim
sl[ax] = slice(None, None, 2)
data = data[sl]
cax = self.axes['c']
if cax is None:
return [(float(nanmin(data)), float(nanmax(data)))]
else:
return [(float(nanmin(data.take(i, axis=cax))),
float(nanmax(data.take(i, axis=cax)))) for i in range(data.shape[-1])]
示例2: reduce_to_array
# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import nanmin [as 別名]
def reduce_to_array(self, reduce_func_nb, *args, **kwargs):
"""See `vectorbt.tseries.nb.reduce_to_array_nb`.
`**kwargs` will be passed to `vectorbt.tseries.common.TSArrayWrapper.wrap_reduced`.
Example:
```python-repl
>>> min_max_nb = njit(lambda col, a: np.array([np.nanmin(a), np.nanmax(a)]))
>>> print(df.vbt.tseries.reduce_to_array(min_max_nb, index=['min', 'max']))
a b c
min 1.0 1.0 1.0
max 5.0 5.0 3.0
```"""
checks.assert_numba_func(reduce_func_nb)
result = nb.reduce_to_array_nb(self.to_2d_array(), reduce_func_nb, *args)
return self.wrap_reduced(result, **kwargs)
示例3: min
# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import nanmin [as 別名]
def min(self, **kwargs):
"""Return min of non-NaN elements."""
return self.wrap_reduced(nanmin(self.to_2d_array(), axis=0), **kwargs)
示例4: quickMinMax
# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import nanmin [as 別名]
def quickMinMax(self, data):
"""
Estimate the min/max values of *data* by subsampling.
"""
while data.size > 1e6:
ax = np.argmax(data.shape)
sl = [slice(None)] * data.ndim
sl[ax] = slice(None, None, 2)
data = data[sl]
return nanmin(data), nanmax(data)
示例5: _phase2
# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import nanmin [as 別名]
def _phase2(self):
"""
Execute phase 2 of the SP region. This phase is used to compute the
active columns.
Note - This should only be called after phase 1 has been called and
after the inhibition radius and neighborhood have been updated.
"""
# Shift the outputs
self.y[:, 1:] = self.y[:, :-1]
self.y[:, 0] = 0
# Calculate k
# - For a column to be active its overlap must be at least as large
# as the overlap of the k-th largest column in its neighborhood.
k = self._get_num_cols()
if self.global_inhibition:
# The neighborhood is all columns, thus the set of active columns
# is simply columns that have an overlap >= the k-th largest in the
# entire region
# Compute the winning column indexes
ix = np.argpartition(-self.overlap[:, 0], k - 1)[:k]
# Set the active columns
self.y[ix, 0] = self.overlap[ix, 0] > 0
else:
# The neighborhood is bounded by the inhibition radius, therefore
# each column's neighborhood must be considered
for i in xrange(self.ncolumns):
# Get the neighbors
ix = np.where(self.neighbors[i])[0]
# Compute the minimum top overlap
if ix.shape[0] <= k:
# Desired number of candidates is at or below the desired
# activity level, so find the overall min
m = max(bn.nanmin(self.overlap[ix, 0]), 1)
else:
# Desired number of candidates is above the desired
# activity level, so find the k-th largest
m = max(-np.partition(-self.overlap[ix, 0], k - 1)[k - 1],
1)
# Set the column activity
if self.overlap[i, 0] >= m: self.y[i, 0] = True