當前位置: 首頁>>代碼示例>>Python>>正文


Python bottleneck.nanmean方法代碼示例

本文整理匯總了Python中bottleneck.nanmean方法的典型用法代碼示例。如果您正苦於以下問題:Python bottleneck.nanmean方法的具體用法?Python bottleneck.nanmean怎麽用?Python bottleneck.nanmean使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在bottleneck的用法示例。


在下文中一共展示了bottleneck.nanmean方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: apply_and_reduce

# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import nanmean [as 別名]
def apply_and_reduce(self, apply_func_nb, reduce_func_nb, *args, **kwargs):
        """See `vectorbt.tseries.nb.apply_and_reduce_nb`.

        `**kwargs` will be passed to `vectorbt.tseries.common.TSArrayWrapper.wrap_reduced`.

        Example:
            ```python-repl
            >>> greater_nb = njit(lambda col, a: a[a > 2])
            >>> mean_nb = njit(lambda col, a: np.nanmean(a))
            >>> print(df.vbt.tseries.apply_and_reduce(greater_nb, mean_nb))
            a    4.0
            b    4.0
            c    3.0
            dtype: float64
            ```"""
        checks.assert_numba_func(apply_func_nb)
        checks.assert_numba_func(reduce_func_nb)

        result = nb.apply_and_reduce_nb(self.to_2d_array(), apply_func_nb, reduce_func_nb, *args)
        return self.wrap_reduced(result, **kwargs) 
開發者ID:polakowo,項目名稱:vectorbt,代碼行數:22,代碼來源:accessors.py

示例2: _method_1

# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import nanmean [as 別名]
def _method_1(data, num_pcs=None):
    """Compute OPCA when num_observations > num_dimensions."""
    data = np.nan_to_num(data - nanmean(data, axis=0))
    T = data.shape[0]
    corr_offset = np.dot(data[1:].T, data[:-1])
    corr_offset += corr_offset.T
    if num_pcs is None:
        eivals, eivects = eigh(corr_offset)
    else:
        eivals, eivects = eigsh(corr_offset, num_pcs, which='LA')
    eivals = np.real(eivals)
    eivects = np.real(eivects)
    idx = np.argsort(-eivals)  # sort the eigenvectors and eigenvalues
    eivals = old_div(eivals[idx], (2. * (T - 1)))
    eivects = eivects[:, idx]
    return eivals, eivects, np.dot(data, eivects) 
開發者ID:losonczylab,項目名稱:sima,代碼行數:18,代碼來源:oPCA.py

示例3: _method_2

# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import nanmean [as 別名]
def _method_2(data, num_pcs=None):
    """Compute OPCA when num_observations <= num_dimensions."""
    data = np.nan_to_num(data - nanmean(data, axis=0))
    T = data.shape[0]
    tmp = np.dot(data, data.T)
    corr_offset = np.zeros(tmp.shape)
    corr_offset[1:] = tmp[:-1]
    corr_offset[:-1] += tmp[1:]
    if num_pcs is None:
        eivals, eivects = eig(corr_offset)
    else:
        eivals, eivects = eigs(corr_offset, num_pcs, which='LR')
    eivals = np.real(eivals)
    eivects = np.real(eivects)
    idx = np.argsort(-eivals)  # sort the eigenvectors and eigenvalues
    eivals = old_div(eivals[idx], (2. * (T - 1)))
    eivects = eivects[:, idx]
    transformed_eivects = np.dot(data.T, eivects)
    for i in range(transformed_eivects.shape[1]):  # normalize the eigenvectors
        transformed_eivects[:, i] /= np.linalg.norm(transformed_eivects[:, i])
    return eivals, transformed_eivects, np.dot(data, transformed_eivects) 
開發者ID:losonczylab,項目名稱:sima,代碼行數:23,代碼來源:oPCA.py

示例4: rolling_apply

# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import nanmean [as 別名]
def rolling_apply(self, window, apply_func_nb, *args, on_matrix=False):
        """See `vectorbt.tseries.nb.rolling_apply_nb` and
        `vectorbt.tseries.nb.rolling_apply_matrix_nb` for `on_matrix=True`.

        Example:
            ```python-repl
            >>> mean_nb = njit(lambda col, i, a: np.nanmean(a))
            >>> print(df.vbt.tseries.rolling_apply(3, mean_nb))
                          a    b         c
            2020-01-01  1.0  5.0  1.000000
            2020-01-02  1.5  4.5  1.500000
            2020-01-03  2.0  4.0  2.000000
            2020-01-04  3.0  3.0  2.333333
            2020-01-05  4.0  2.0  2.000000

            >>> mean_matrix_nb = njit(lambda i, a: np.nanmean(a))
            >>> print(df.vbt.tseries.rolling_apply(3,
            ...     mean_matrix_nb, on_matrix=True))
                               a         b         c
            2020-01-01  2.333333  2.333333  2.333333
            2020-01-02  2.500000  2.500000  2.500000
            2020-01-03  2.666667  2.666667  2.666667
            2020-01-04  2.777778  2.777778  2.777778
            2020-01-05  2.666667  2.666667  2.666667
            ```"""
        checks.assert_numba_func(apply_func_nb)

        if on_matrix:
            result = nb.rolling_apply_matrix_nb(self.to_2d_array(), window, apply_func_nb, *args)
        else:
            result = nb.rolling_apply_nb(self.to_2d_array(), window, apply_func_nb, *args)
        return self.wrap(result) 
開發者ID:polakowo,項目名稱:vectorbt,代碼行數:34,代碼來源:accessors.py

示例5: expanding_apply

# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import nanmean [as 別名]
def expanding_apply(self, apply_func_nb, *args, on_matrix=False):
        """See `vectorbt.tseries.nb.expanding_apply_nb` and
        `vectorbt.tseries.nb.expanding_apply_matrix_nb` for `on_matrix=True`.

        Example:
            ```python-repl
            >>> mean_nb = njit(lambda col, i, a: np.nanmean(a))
            >>> print(df.vbt.tseries.expanding_apply(mean_nb))
                          a    b    c
            2020-01-01  1.0  5.0  1.0
            2020-01-02  1.5  4.5  1.5
            2020-01-03  2.0  4.0  2.0
            2020-01-04  2.5  3.5  2.0
            2020-01-05  3.0  3.0  1.8

            >>> mean_matrix_nb = njit(lambda i, a: np.nanmean(a))
            >>> print(df.vbt.tseries.expanding_apply(
            ...     mean_matrix_nb, on_matrix=True))
                               a         b         c
            2020-01-01  2.333333  2.333333  2.333333
            2020-01-02  2.500000  2.500000  2.500000
            2020-01-03  2.666667  2.666667  2.666667
            2020-01-04  2.666667  2.666667  2.666667
            2020-01-05  2.600000  2.600000  2.600000
            ```"""
        checks.assert_numba_func(apply_func_nb)

        if on_matrix:
            result = nb.expanding_apply_matrix_nb(self.to_2d_array(), apply_func_nb, *args)
        else:
            result = nb.expanding_apply_nb(self.to_2d_array(), apply_func_nb, *args)
        return self.wrap(result) 
開發者ID:polakowo,項目名稱:vectorbt,代碼行數:34,代碼來源:accessors.py

示例6: groupby_apply

# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import nanmean [as 別名]
def groupby_apply(self, by, apply_func_nb, *args, on_matrix=False, **kwargs):
        """See `vectorbt.tseries.nb.groupby_apply_nb` and
        `vectorbt.tseries.nb.groupby_apply_matrix_nb` for `on_matrix=True`.

        For `by`, see `pandas.DataFrame.groupby`.

        Example:
            ```python-repl
            >>> mean_nb = njit(lambda col, i, a: np.nanmean(a))
            >>> print(df.vbt.tseries.groupby_apply([1, 1, 2, 2, 3], mean_nb))
                 a    b    c
            1  1.5  4.5  1.5
            2  3.5  2.5  2.5
            3  5.0  1.0  1.0

            >>> mean_matrix_nb = njit(lambda i, a: np.nanmean(a))
            >>> print(df.vbt.tseries.groupby_apply([1, 1, 2, 2, 3],
            ...     mean_matrix_nb, on_matrix=True))
                      a         b         c
            1  2.500000  2.500000  2.500000
            2  2.833333  2.833333  2.833333
            3  2.333333  2.333333  2.333333
            ```"""
        checks.assert_numba_func(apply_func_nb)

        regrouped = self._obj.groupby(by, axis=0, **kwargs)
        groups = Dict()
        for i, (k, v) in enumerate(regrouped.indices.items()):
            groups[i] = np.asarray(v)
        if on_matrix:
            result = nb.groupby_apply_matrix_nb(self.to_2d_array(), groups, apply_func_nb, *args)
        else:
            result = nb.groupby_apply_nb(self.to_2d_array(), groups, apply_func_nb, *args)
        return self.wrap_reduced(result, index=list(regrouped.indices.keys())) 
開發者ID:polakowo,項目名稱:vectorbt,代碼行數:36,代碼來源:accessors.py

示例7: resample_apply

# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import nanmean [as 別名]
def resample_apply(self, freq, apply_func_nb, *args, on_matrix=False, **kwargs):
        """See `vectorbt.tseries.nb.groupby_apply_nb` and
        `vectorbt.tseries.nb.groupby_apply_matrix_nb` for `on_matrix=True`.

        For `freq`, see `pandas.DataFrame.resample`.

        Example:
            ```python-repl
            >>> mean_nb = njit(lambda col, i, a: np.nanmean(a))
            >>> print(df.vbt.tseries.resample_apply('2d', mean_nb))
                          a    b    c
            2020-01-01  1.5  4.5  1.5
            2020-01-03  3.5  2.5  2.5
            2020-01-05  5.0  1.0  1.0

            >>> mean_matrix_nb = njit(lambda i, a: np.nanmean(a))
            >>> print(df.vbt.tseries.resample_apply('2d',
            ...     mean_matrix_nb, on_matrix=True))
                               a         b         c
            2020-01-01  2.500000  2.500000  2.500000
            2020-01-03  2.833333  2.833333  2.833333
            2020-01-05  2.333333  2.333333  2.333333
            ```"""
        checks.assert_numba_func(apply_func_nb)

        resampled = self._obj.resample(freq, axis=0, **kwargs)
        groups = Dict()
        for i, (k, v) in enumerate(resampled.indices.items()):
            groups[i] = np.asarray(v)
        if on_matrix:
            result = nb.groupby_apply_matrix_nb(self.to_2d_array(), groups, apply_func_nb, *args)
        else:
            result = nb.groupby_apply_nb(self.to_2d_array(), groups, apply_func_nb, *args)
        result_obj = self.wrap(result, index=list(resampled.indices.keys()))
        resampled_arr = np.full((resampled.ngroups, self.to_2d_array().shape[1]), np.nan)
        resampled_obj = self.wrap(resampled_arr, index=pd.Index(list(resampled.groups.keys()), freq=freq))
        resampled_obj.loc[result_obj.index] = result_obj.values
        return resampled_obj 
開發者ID:polakowo,項目名稱:vectorbt,代碼行數:40,代碼來源:accessors.py

示例8: mean

# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import nanmean [as 別名]
def mean(self, **kwargs):
        """Return mean of non-NaN elements."""
        return self.wrap_reduced(nanmean(self.to_2d_array(), axis=0), **kwargs) 
開發者ID:polakowo,項目名稱:vectorbt,代碼行數:5,代碼來源:accessors.py

示例9: shifted_corr

# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import nanmean [as 別名]
def shifted_corr(reference, image, displacement):
    """Calculate the correlation between the reference and the image shifted
    by the given displacement.

    Parameters
    ----------
    reference : np.ndarray
    image : np.ndarray
    displacement : np.ndarray

    Returns
    -------
    correlation : float

    """

    ref_cuts = np.maximum(0, displacement)
    ref = reference[ref_cuts[0]:, ref_cuts[1]:, ref_cuts[2]:]
    im_cuts = np.maximum(0, -displacement)
    im = image[im_cuts[0]:, im_cuts[1]:, im_cuts[2]:]
    s = np.minimum(im.shape, ref.shape)
    ref = ref[:s[0], :s[1], :s[2]]
    im = im[:s[0], :s[1], :s[2]]
    ref -= nanmean(ref.reshape(-1, ref.shape[-1]), axis=0)
    ref = np.nan_to_num(ref)
    im -= nanmean(im.reshape(-1, im.shape[-1]), axis=0)
    im = np.nan_to_num(im)
    assert np.all(np.isfinite(ref)) and np.all(np.isfinite(im))
    corr = nanmean(
        [old_div(np.sum(i * r), np.sqrt(np.sum(i * i) * np.sum(r * r))) for
         i, r in zip(np.rollaxis(im, -1), np.rollaxis(ref, -1))])
    return corr 
開發者ID:losonczylab,項目名稱:sima,代碼行數:34,代碼來源:frame_align.py

示例10: _phase3

# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import nanmean [as 別名]
def _phase3(self):
	"""
	Normal phase 3, but with tracking the boost changes. Double commented lines
	are new.
	"""
	
	# Update permanences
	self.p = np.clip(self.p + (self.c_pupdate * self.y[:, 0:1] *
		self.x[self.syn_map] - self.pdec * self.y[:, 0:1]), 0, 1)
	
	if self.disable_boost is False:
		# Update the boosting mechanisms
		if self.global_inhibition:
			min_dc = np.zeros(self.ncolumns)
			min_dc.fill(self.c_mdc * bn.nanmax(self.active_dc))
		else:
			min_dc = self.c_mdc * bn.nanmax(self.neighbors * self.active_dc, 1)
		
		## Save pre-overlap boost info
		boost = list(self.boost)
		
		# Update boost
		self._update_active_duty_cycle()
		self._update_boost(min_dc)
		self._update_overlap_duty_cycle()
	
		## Write out overlap boost changes
		with open(os.path.join(self.out_path, 'overlap_boost.csv'), 'ab') as f:
			writer = csv.writer(f)
			writer.writerow([self.iter, bn.nanmean(boost != self.boost)])
	
		# Boost permanences
		mask = self.overlap_dc < min_dc
		mask.resize(self.ncolumns, 1)
		self.p = np.clip(self.p + self.c_sboost * mask, 0, 1)
	
		## Write out permanence boost info
		with open(os.path.join(self.out_path, 'permanence_boost.csv'), 'ab') \
			as f:
			writer = csv.writer(f)
			writer.writerow([self.iter, bn.nanmean(mask)])
	
	# Trim synapses
	if self.trim is not False:
		self.p[self.p < self.trim] = 0 
開發者ID:tehtechguy,項目名稱:mHTM,代碼行數:47,代碼來源:boost_experiment.py


注:本文中的bottleneck.nanmean方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。