本文整理匯總了Python中bottleneck.argpartition方法的典型用法代碼示例。如果您正苦於以下問題:Python bottleneck.argpartition方法的具體用法?Python bottleneck.argpartition怎麽用?Python bottleneck.argpartition使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類bottleneck
的用法示例。
在下文中一共展示了bottleneck.argpartition方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: evaluate_emb
# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import argpartition [as 別名]
def evaluate_emb(emb, labels):
"""Evaluate embeddings based on Recall@k."""
d_mat = get_distance_matrix(emb)
d_mat = d_mat.asnumpy()
labels = labels.asnumpy()
names = []
accs = []
for k in [1, 2, 4, 8, 16]:
names.append('Recall@%d' % k)
correct, cnt = 0.0, 0.0
for i in range(emb.shape[0]):
d_mat[i, i] = 1e10
nns = argpartition(d_mat[i], k)[:k]
if any(labels[i] == labels[nn] for nn in nns):
correct += 1
cnt += 1
accs.append(correct/cnt)
return names, accs
示例2: ndcg
# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import argpartition [as 別名]
def ndcg(X_pred, heldout_batch, k=100):
'''
normalized discounted cumulative gain@k for binary relevance
ASSUMPTIONS: all the 0's in heldout_data indicate 0 relevance
'''
batch_users = X_pred.shape[0]
idx_topk_part = bn.argpartition(-X_pred, k, axis=1)
topk_part = X_pred[np.arange(batch_users)[:, np.newaxis],
idx_topk_part[:, :k]]
idx_part = np.argsort(-topk_part, axis=1)
# X_pred[np.arange(batch_users)[:, np.newaxis], idx_topk] is the sorted
# topk predicted score
idx_topk = idx_topk_part[np.arange(batch_users)[:, np.newaxis], idx_part]
# build the discount template
tp = 1. / np.log2(np.arange(2, k + 2))
DCG = (heldout_batch[np.arange(batch_users)[:, np.newaxis],
idx_topk].toarray() * tp).sum(axis=1)
IDCG = np.array([(tp[:min(n, k)]).sum()
for n in heldout_batch.getnnz(axis=1)])
return DCG / IDCG
示例3: eval_apk
# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import argpartition [as 別名]
def eval_apk(true_scores, pred_scores, topk):
idx = bottleneck.argpartition(-pred_scores, topk)[:topk] # find the top-k smallest
noise = np.random.random(topk)
if not isinstance(pred_scores, np.ndarray):
pred_scores = np.array(pred_scores)
if not isinstance(true_scores, np.ndarray):
true_scores = np.array(true_scores)
rec = sorted(zip(pred_scores[idx], noise, true_scores[idx]), reverse=True)
nhits = 0.
k = topk if topk >= 0 else len(rec)
sumap = 0.0
for i in range(len(rec)):
if (rec[i][-1] != 0.):
nhits += 1.0
if i < k:
sumap += nhits / (i+1.0)
else:
break
nhits = np.sum(true_scores)
if nhits != 0:
sumap /= min(nhits, k)
return sumap
else:
return 0.
示例4: NDCG_binary_at_k_batch
# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import argpartition [as 別名]
def NDCG_binary_at_k_batch(X_pred, heldout_batch, k=100):
'''
normalized discounted cumulative gain@k for binary relevance
ASSUMPTIONS: all the 0's in heldout_data indicate 0 relevance
'''
batch_users = X_pred.shape[0]
idx_topk_part = bn.argpartition(-X_pred, k, axis=1)
topk_part = X_pred[np.arange(batch_users)[:, np.newaxis],
idx_topk_part[:, :k]]
idx_part = np.argsort(-topk_part, axis=1)
# X_pred[np.arange(batch_users)[:, np.newaxis], idx_topk] is the sorted
# topk predicted score
idx_topk = idx_topk_part[np.arange(batch_users)[:, np.newaxis], idx_part]
# build the discount template
tp = 1. / np.log2(np.arange(2, k + 2))
DCG = (heldout_batch[np.arange(batch_users)[:, np.newaxis],
idx_topk].toarray() * tp).sum(axis=1)
IDCG = np.array([(tp[:min(n, k)]).sum()
for n in heldout_batch.getnnz(axis=1)])
return DCG / IDCG
開發者ID:MaurizioFD,項目名稱:RecSys2019_DeepLearning_Evaluation,代碼行數:23,代碼來源:split_train_validation_test_VAE_CF.py
示例5: _find_constrained_bicluster
# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import argpartition [as 別名]
def _find_constrained_bicluster(self, data):
"""Find a k x l bicluster."""
num_rows, num_cols = data.shape
k = random.randint(1, math.ceil(num_rows / 2))
l = random.randint(1, math.ceil(num_cols / 2))
cols = np.random.choice(num_cols, size=l, replace=False)
old_avg, avg = float('-inf'), 0.0
while abs(avg - old_avg) > self.tol:
old_avg = avg
row_sums = np.sum(data[:, cols], axis=1)
rows = bn.argpartition(row_sums, num_rows - k)[-k:] # this is usually faster than rows = np.argsort(row_sums)[-k:]
col_sums = np.sum(data[rows, :], axis=0)
cols = bn.argpartition(col_sums, num_cols - l)[-l:] # this is usually faster than cols = np.argsort(col_sums)[-l:]
avg = np.mean(data[np.ix_(rows, cols)])
return Bicluster(rows, cols)
示例6: top_n_indexes
# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import argpartition [as 別名]
def top_n_indexes(arr, n):
idx = bn.argpartition(arr, arr.size-n, axis=None)[-n:]
width = arr.shape[1]
return [divmod(i, width) for i in idx]
示例7: top_n_indexes
# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import argpartition [as 別名]
def top_n_indexes(arr, n):
idx = bn.argpartition(arr, arr.size - n, axis=None)[-n:]
width = arr.shape[1]
return [divmod(i, width) for i in idx]
示例8: evaluate_emb
# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import argpartition [as 別名]
def evaluate_emb(emb, labels):
"""Evaluate embeddings based on Recall@k."""
d_mat = get_distance_matrix(emb)
d_mat = d_mat.asnumpy()
labels = labels.asnumpy()
names = []
accs = []
for k in [1, 2, 4, 8, 16]:
names.append('Recall@%d' % k)
correct, cnt = 0.0, 0.0
for i in range(emb.shape[0]):
d_mat[i, i] = 1e10
nns = argpartition(d_mat[i], k)[:k]
if any(labels[i] == labels[nn] for nn in nns):
correct += 1
cnt += 1
accs.append(correct/cnt)
return names, accs
#def validate(val_loader, model, criterion, args):
# outputs = []
# labels = []
#
# model.eval()
#
# with torch.no_grad():
# end = time.time()
# for i, (input, target) in enumerate(val_loader):
# outpus += model(input)[-1].cpu().tolist()
# labels += target.cpu().tolist()
#
示例9: recall
# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import argpartition [as 別名]
def recall(X_pred, heldout_batch, k=100):
batch_users = X_pred.shape[0]
idx = bn.argpartition(-X_pred, k, axis=1)
X_pred_binary = np.zeros_like(X_pred, dtype=bool)
X_pred_binary[np.arange(batch_users)[:, np.newaxis], idx[:, :k]] = True
X_true_binary = (heldout_batch > 0).toarray()
tmp = (np.logical_and(X_true_binary, X_pred_binary).sum(axis=1)).astype(
np.float32)
recall = tmp / np.minimum(k, X_true_binary.sum(axis=1))
return recall
示例10: eval_multiple
# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import argpartition [as 別名]
def eval_multiple(true_scores, pred_scores, topk):
idx = bottleneck.argpartition(-pred_scores, topk)[:topk]
noise = np.random.random(topk)
if not isinstance(pred_scores, np.ndarray):
pred_scores = np.array(pred_scores)
if not isinstance(true_scores, np.ndarray):
true_scores = np.array(true_scores)
rec = sorted(zip(pred_scores[idx], noise, true_scores[idx]), reverse=True)
nhits = 0.
nhits_topk = 0.
k = topk if topk >= 0 else len(rec)
sumap = 0.0
for i in range(len(rec)):
if rec[i][-1] != 0.:
nhits += 1.0
if i < k:
nhits_topk += 1
sumap += nhits / (i+1.0)
nhits = np.sum(true_scores)
if nhits != 0:
sumap /= min(nhits, k)
map_at_k = sumap
recall_at_k = nhits_topk / nhits
precision_at_k = nhits_topk / k
else:
map_at_k = 0.
recall_at_k = 0.
precision_at_k = 0.
return map_at_k, recall_at_k, precision_at_k
示例11: Recall_at_k_batch
# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import argpartition [as 別名]
def Recall_at_k_batch(X_pred, heldout_batch, k=100):
batch_users = X_pred.shape[0]
idx = bn.argpartition(-X_pred, k, axis=1)
X_pred_binary = np.zeros_like(X_pred, dtype=bool)
X_pred_binary[np.arange(batch_users)[:, np.newaxis], idx[:, :k]] = True
X_true_binary = (heldout_batch > 0).toarray()
tmp = (np.logical_and(X_true_binary, X_pred_binary).sum(axis=1)).astype(
np.float32)
recall = tmp / np.minimum(k, X_true_binary.sum(axis=1))
return recall
##############################################################################################################################################################
############################ Train a Multi-VAE^{PR}
開發者ID:MaurizioFD,項目名稱:RecSys2019_DeepLearning_Evaluation,代碼行數:40,代碼來源:split_train_validation_test_VAE_CF.py
示例12: top_n_indexes
# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import argpartition [as 別名]
def top_n_indexes(arr, n):
# https://gist.github.com/tomerfiliba/3698403
try:
import bottleneck
idx = bottleneck.argpartition(arr, arr.size-n, axis=None)[-n:]
except:
idx = np.argpartition(arr, arr.size - n, axis=None)[-n:]
width = arr.shape[1]
return [divmod(i, width) for i in idx]
示例13: __random_deletion
# 需要導入模塊: import bottleneck [as 別名]
# 或者: from bottleneck import argpartition [as 別名]
def __random_deletion(self, data, bool_array, msr_array, choice):
indices = np.where(bool_array)[0]
n = int(math.ceil(len(msr_array) * self.alpha))
max_msr_indices = bn.argpartition(msr_array, len(msr_array) - n)[-n:]
i = indices[np.random.choice(max_msr_indices)]
bool_array[i] = False