本文整理匯總了Python中boto3.session方法的典型用法代碼示例。如果您正苦於以下問題:Python boto3.session方法的具體用法?Python boto3.session怎麽用?Python boto3.session使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類boto3
的用法示例。
在下文中一共展示了boto3.session方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: init_boto_client
# 需要導入模塊: import boto3 [as 別名]
# 或者: from boto3 import session [as 別名]
def init_boto_client(client_name, region, args):
"""
Initiates boto's client object
:param client_name: client name
:param region: region name
:param args: arguments
:return: Client
"""
if args.token_key_id and args.token_secret:
boto_client = boto3.client(
client_name,
aws_access_key_id=args.token_key_id,
aws_secret_access_key=args.token_secret,
region_name=region
)
elif args.profile:
session = boto3.session.Session(profile_name=args.profile)
boto_client = session.client(client_name, region_name=region)
else:
boto_client = boto3.client(client_name, region_name=region)
return boto_client
示例2: setup
# 需要導入模塊: import boto3 [as 別名]
# 或者: from boto3 import session [as 別名]
def setup(event):
# Extract attributes passed in by CodePipeline
job_id = event['CodePipeline.job']['id']
job_data = event['CodePipeline.job']['data']
artifact = job_data['inputArtifacts'][0]
config = job_data['actionConfiguration']['configuration']
credentials = job_data['artifactCredentials']
from_bucket = artifact['location']['s3Location']['bucketName']
from_key = artifact['location']['s3Location']['objectKey']
from_revision = artifact['revision']
#output_artifact = job_data['outputArtifacts'][0]
#to_bucket = output_artifact['location']['s3Location']['bucketName']
#to_key = output_artifact['location']['s3Location']['objectKey']
# Temporary credentials to access CodePipeline artifact in S3
key_id = credentials['accessKeyId']
key_secret = credentials['secretAccessKey']
session_token = credentials['sessionToken']
session = Session(aws_access_key_id=key_id,
aws_secret_access_key=key_secret,
aws_session_token=session_token)
s3 = session.client('s3',
config=botocore.client.Config(signature_version='s3v4'))
return (job_id, s3, from_bucket, from_key, from_revision)
開發者ID:alestic,項目名稱:aws-git-backed-static-website,代碼行數:27,代碼來源:aws-git-backed-static-website-lambda.py
示例3: upload_export_tarball
# 需要導入模塊: import boto3 [as 別名]
# 或者: from boto3 import session [as 別名]
def upload_export_tarball(self, realm: Optional[Realm], tarball_path: str) -> str:
def percent_callback(bytes_transferred: Any) -> None:
sys.stdout.write('.')
sys.stdout.flush()
# We use the avatar bucket, because it's world-readable.
key = self.avatar_bucket.Object(os.path.join("exports", generate_random_token(32),
os.path.basename(tarball_path)))
key.upload_file(tarball_path, Callback=percent_callback)
session = botocore.session.get_session()
config = Config(signature_version=botocore.UNSIGNED)
public_url = session.create_client('s3', config=config).generate_presigned_url(
'get_object',
Params={
'Bucket': self.avatar_bucket.name,
'Key': key.key,
},
ExpiresIn=0,
)
return public_url
示例4: read_job_info
# 需要導入模塊: import boto3 [as 別名]
# 或者: from boto3 import session [as 別名]
def read_job_info(event):
tmp_file = tempfile.NamedTemporaryFile()
objectKey = event['CodePipeline.job']['data']['inputArtifacts'][0]['location']['s3Location']['objectKey']
print("[INFO]Object Key:", objectKey)
bucketname = event['CodePipeline.job']['data']['inputArtifacts'][0]['location']['s3Location']['bucketName']
print("[INFO]Bucket Name:", bucketname)
artifactCredentials = event['CodePipeline.job']['data']['artifactCredentials']
session = Session(aws_access_key_id=artifactCredentials['accessKeyId'],
aws_secret_access_key=artifactCredentials['secretAccessKey'],
aws_session_token=artifactCredentials['sessionToken'])
s3 = session.resource('s3')
obj = s3.Object(bucketname,objectKey)
item = json.loads(obj.get()['Body'].read().decode('utf-8'))
return item
示例5: write_job_info_s3
# 需要導入模塊: import boto3 [as 別名]
# 或者: from boto3 import session [as 別名]
def write_job_info_s3(event, writeData):
objectKey = event['CodePipeline.job']['data']['outputArtifacts'][0]['location']['s3Location']['objectKey']
bucketname = event['CodePipeline.job']['data']['outputArtifacts'][0]['location']['s3Location']['bucketName']
artifactCredentials = event['CodePipeline.job']['data']['artifactCredentials']
artifactName = event['CodePipeline.job']['data']['outputArtifacts'][0]['name']
json_data = json.dumps(writeData, indent=4, sort_keys=True, default=str)
print(json_data)
session = Session(aws_access_key_id=artifactCredentials['accessKeyId'],
aws_secret_access_key=artifactCredentials['secretAccessKey'],
aws_session_token=artifactCredentials['sessionToken'])
s3 = session.resource("s3")
#object = s3.Object(bucketname, objectKey + '/event.json')
object = s3.Object(bucketname, objectKey)
print(object)
object.put(Body=json_data, ServerSideEncryption='aws:kms', SSEKMSKeyId=SSEKMSKeyId)
print('[INFO]event written to s3')
示例6: write_job_info_s3
# 需要導入模塊: import boto3 [as 別名]
# 或者: from boto3 import session [as 別名]
def write_job_info_s3(event):
print(event)
objectKey = event['CodePipeline.job']['data']['outputArtifacts'][0]['location']['s3Location']['objectKey']
bucketname = event['CodePipeline.job']['data']['outputArtifacts'][0]['location']['s3Location']['bucketName']
artifactCredentials = event['CodePipeline.job']['data']['artifactCredentials']
artifactName = event['CodePipeline.job']['data']['outputArtifacts'][0]['name']
# S3 Managed Key for Encryption
S3SSEKey = os.environ['SSEKMSKeyIdIn']
json_data = json.dumps(event)
print(json_data)
session = Session(aws_access_key_id=artifactCredentials['accessKeyId'],
aws_secret_access_key=artifactCredentials['secretAccessKey'],
aws_session_token=artifactCredentials['sessionToken'])
s3 = session.resource("s3")
object = s3.Object(bucketname, objectKey)
print(object)
object.put(Body=json_data, ServerSideEncryption='aws:kms', SSEKMSKeyId=S3SSEKey)
print('[SUCCESS]Job Information Written to S3')
示例7: read_job_info
# 需要導入模塊: import boto3 [as 別名]
# 或者: from boto3 import session [as 別名]
def read_job_info(event):
print("[DEBUG]EVENT IN:", event)
bucketname = event['CodePipeline.job']['data']['inputArtifacts'][0]['location']['s3Location']['bucketName']
print("[INFO]Previous Job Info Bucket:", bucketname)
objectKey = event['CodePipeline.job']['data']['inputArtifacts'][0]['location']['s3Location']['objectKey']
print("[INFO]Previous Job Info Object:", objectKey)
artifactCredentials = event['CodePipeline.job']['data']['artifactCredentials']
session = Session(aws_access_key_id=artifactCredentials['accessKeyId'],
aws_secret_access_key=artifactCredentials['secretAccessKey'],
aws_session_token=artifactCredentials['sessionToken'])
s3 = session.resource('s3')
obj = s3.Object(bucketname,objectKey)
item = json.loads(obj.get()['Body'].read().decode('utf-8'))
print("[INFO]Previous CodePipeline Job Info Sucessfully Read:", item)
return item
開發者ID:aws-samples,項目名稱:mlops-amazon-sagemaker-devops-with-ml,代碼行數:26,代碼來源:MLOps-BIA-EvaluateModel.py
示例8: read_job_info
# 需要導入模塊: import boto3 [as 別名]
# 或者: from boto3 import session [as 別名]
def read_job_info(event):
objectKey = event['CodePipeline.job']['data']['inputArtifacts'][0]['location']['s3Location']['objectKey']
bucketname = event['CodePipeline.job']['data']['inputArtifacts'][0]['location']['s3Location']['bucketName']
artifactCredentials = event['CodePipeline.job']['data']['artifactCredentials']
session = Session(aws_access_key_id=artifactCredentials['accessKeyId'],
aws_secret_access_key=artifactCredentials['secretAccessKey'],
aws_session_token=artifactCredentials['sessionToken'])
s3 = session.resource('s3')
obj = s3.Object(bucketname,objectKey)
item = json.loads(obj.get()['Body'].read().decode('utf-8'))
print("[INFO]Previous CodePipeline Job Info Sucessfully Read:", item)
return item
開發者ID:aws-samples,項目名稱:mlops-amazon-sagemaker-devops-with-ml,代碼行數:22,代碼來源:MLOps-BYO-EvaluateModel.py
示例9: read_job_info
# 需要導入模塊: import boto3 [as 別名]
# 或者: from boto3 import session [as 別名]
def read_job_info(event):
tmp_file = tempfile.NamedTemporaryFile()
objectKey = event['CodePipeline.job']['data']['inputArtifacts'][0]['location']['s3Location']['objectKey']
print("[INFO]Object Key:", objectKey)
bucketname = event['CodePipeline.job']['data']['inputArtifacts'][0]['location']['s3Location']['bucketName']
print("[INFO]Bucket Name:", bucketname)
artifactCredentials = event['CodePipeline.job']['data']['artifactCredentials']
session = Session(aws_access_key_id=artifactCredentials['accessKeyId'],
aws_secret_access_key=artifactCredentials['secretAccessKey'],
aws_session_token=artifactCredentials['sessionToken'])
s3 = session.resource('s3')
obj = s3.Object(bucketname, objectKey)
item = json.loads(obj.get()['Body'].read().decode('utf-8'))
return item
示例10: write_job_info_s3
# 需要導入模塊: import boto3 [as 別名]
# 或者: from boto3 import session [as 別名]
def write_job_info_s3(event, writeData):
objectKey = event['CodePipeline.job']['data']['outputArtifacts'][0]['location']['s3Location']['objectKey']
bucketname = event['CodePipeline.job']['data']['outputArtifacts'][0]['location']['s3Location']['bucketName']
artifactCredentials = event['CodePipeline.job']['data']['artifactCredentials']
artifactName = event['CodePipeline.job']['data']['outputArtifacts'][0]['name']
json_data = json.dumps(writeData, indent=4, sort_keys=True, default=str)
print(json_data)
session = Session(aws_access_key_id=artifactCredentials['accessKeyId'],
aws_secret_access_key=artifactCredentials['secretAccessKey'],
aws_session_token=artifactCredentials['sessionToken'])
s3 = session.resource("s3")
# object = s3.Object(bucketname, objectKey + '/event.json')
object = s3.Object(bucketname, objectKey)
print(object)
object.put(Body=json_data, ServerSideEncryption='aws:kms', SSEKMSKeyId=SSEKMSKeyId)
print('[INFO]event written to s3')
示例11: read_job_info
# 需要導入模塊: import boto3 [as 別名]
# 或者: from boto3 import session [as 別名]
def read_job_info(event):
tmp_file = tempfile.NamedTemporaryFile()
objectKey = event['CodePipeline.job']['data']['inputArtifacts'][0]['location']['s3Location']['objectKey']
print("[INFO]Object:", objectKey)
bucketname = event['CodePipeline.job']['data']['inputArtifacts'][0]['location']['s3Location']['bucketName']
print("[INFO]Bucket:", bucketname)
artifactCredentials = event['CodePipeline.job']['data']['artifactCredentials']
session = Session(aws_access_key_id=artifactCredentials['accessKeyId'],
aws_secret_access_key=artifactCredentials['secretAccessKey'],
aws_session_token=artifactCredentials['sessionToken'])
s3 = session.resource('s3')
obj = s3.Object(bucketname, objectKey)
item = json.loads(obj.get()['Body'].read().decode('utf-8'))
print("Item:", item)
return item
示例12: write_job_info_s3
# 需要導入模塊: import boto3 [as 別名]
# 或者: from boto3 import session [as 別名]
def write_job_info_s3(event):
KMSKeyIdSSEIn = os.environ['SSEKMSKeyIdIn']
objectKey = event['CodePipeline.job']['data']['outputArtifacts'][0]['location']['s3Location']['objectKey']
bucketname = event['CodePipeline.job']['data']['outputArtifacts'][0]['location']['s3Location']['bucketName']
artifactCredentials = event['CodePipeline.job']['data']['artifactCredentials']
artifactName = event['CodePipeline.job']['data']['outputArtifacts'][0]['name']
json_data = json.dumps(event)
print(json_data)
session = Session(aws_access_key_id=artifactCredentials['accessKeyId'],
aws_secret_access_key=artifactCredentials['secretAccessKey'],
aws_session_token=artifactCredentials['sessionToken'])
s3 = session.resource("s3")
object = s3.Object(bucketname, objectKey + '/event.json')
object = s3.Object(bucketname, objectKey)
print(object)
object.put(Body=json_data, ServerSideEncryption='aws:kms', SSEKMSKeyId=KMSKeyIdSSEIn)
開發者ID:aws-samples,項目名稱:mlops-amazon-sagemaker-devops-with-ml,代碼行數:24,代碼來源:MLOps-BIA-EvaluateModel.py
示例13: read_job_info
# 需要導入模塊: import boto3 [as 別名]
# 或者: from boto3 import session [as 別名]
def read_job_info(event):
print("[DEBUG]EVENT IN:", event)
bucketname = event['CodePipeline.job']['data']['inputArtifacts'][0]['location']['s3Location']['bucketName']
print("[INFO]Previous Job Info Bucket:", bucketname)
objectKey = event['CodePipeline.job']['data']['inputArtifacts'][0]['location']['s3Location']['objectKey']
print("[INFO]Previous Job Info Object:", objectKey)
artifactCredentials = event['CodePipeline.job']['data']['artifactCredentials']
session = Session(aws_access_key_id=artifactCredentials['accessKeyId'],
aws_secret_access_key=artifactCredentials['secretAccessKey'],
aws_session_token=artifactCredentials['sessionToken'])
s3 = session.resource('s3')
obj = s3.Object(bucketname, objectKey)
item = json.loads(obj.get()['Body'].read().decode('utf-8'))
print("[INFO]Previous CodePipeline Job Info Sucessfully Read:", item)
return item
開發者ID:aws-samples,項目名稱:mlops-amazon-sagemaker-devops-with-ml,代碼行數:24,代碼來源:MLOps-BIA-EvaluateModel.py
示例14: __init__
# 需要導入模塊: import boto3 [as 別名]
# 或者: from boto3 import session [as 別名]
def __init__(self, client=None, **kwargs):
self.dimensions = []
self.timers = {}
self.dimension_stack = []
self.storage_resolution = 60
self.use_stream_id = kwargs.get('UseStreamId', True)
if self.use_stream_id:
self.stream_id = str(uuid.uuid4())
self.with_dimension('MetricStreamId', self.stream_id)
else:
self.stream_id = None
if client:
self.client = client
else:
profile = kwargs.get('Profile')
if profile:
session = boto3.session.Session(profile_name=profile)
self.client = session.client('cloudwatch')
else:
self.client = boto3.client('cloudwatch')
示例15: setup_s3_client
# 需要導入模塊: import boto3 [as 別名]
# 或者: from boto3 import session [as 別名]
def setup_s3_client(job_data):
"""Creates an S3 client
Uses the credentials passed in the event by CodePipeline. These
credentials can be used to access the artifact bucket.
Args:
job_data: The job data structure
Returns:
An S3 client with the appropriate credentials
"""
key_id = job_data['artifactCredentials']['accessKeyId']
key_secret = job_data['artifactCredentials']['secretAccessKey']
session_token = job_data['artifactCredentials']['sessionToken']
session = Session(
aws_access_key_id=key_id,
aws_secret_access_key=key_secret,
aws_session_token=session_token)
return session.client('s3', config=botocore.client.Config(signature_version='s3v4'))