本文整理匯總了Python中bokeh.transform.factor_cmap方法的典型用法代碼示例。如果您正苦於以下問題:Python transform.factor_cmap方法的具體用法?Python transform.factor_cmap怎麽用?Python transform.factor_cmap使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類bokeh.transform
的用法示例。
在下文中一共展示了transform.factor_cmap方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _create_fill_map
# 需要導入模塊: from bokeh import transform [as 別名]
# 或者: from bokeh.transform import factor_cmap [as 別名]
def _create_fill_map(
source: ColumnDataSource, source_column: str = None
) -> Tuple[Union[factor_cmap, linear_cmap], Optional[ColorBar]]:
"""Create factor map or linear map based on `source_column`."""
fill_map = "navy"
color_bar = None
if source_column is None or source_column not in source.data:
return fill_map, color_bar
col_kind = source.data[source_column].dtype.kind
if col_kind in ["b", "O"]:
s_values = set(source.data[source_column])
if np.nan in s_values:
s_values.remove(np.nan)
values = list(s_values)
fill_map = factor_cmap(
source_column, palette=viridis(max(3, len(values))), factors=values
)
elif col_kind in ["i", "u", "f", "M"]:
values = [val for val in source.data[source_column] if not np.isnan(val)]
fill_map = linear_cmap(
field_name=source_column,
palette=viridis(256),
low=np.min(values),
high=np.max(values),
)
color_bar = ColorBar(
color_mapper=fill_map["transform"], width=8, location=(0, 0) # type: ignore
)
return fill_map, color_bar
# pylint: disable=too-many-arguments
示例2: step_viewer
# 需要導入模塊: from bokeh import transform [as 別名]
# 或者: from bokeh.transform import factor_cmap [as 別名]
def step_viewer(grad_data):
mice = sorted(grad_data['subject'].unique())
palette = [cc.rainbow[i] for i in range(len(grad_data['pilot'].unique()))]
current_step = grad_data.groupby('subject').last().reset_index()
current_step = current_step[['subject', 'step_n', 'pilot']]
pilots = current_step['pilot'].unique()
pilot_colors = {p:palette[i] for i,p in enumerate(pilots) }
pilot_colors = [pilot_colors[p] for p in current_step['pilot']]
current_step['colors'] = pilot_colors
p = figure(x_range=current_step['subject'].unique(),title='Subject Steps',
plot_height=600,
plot_width=1000)
p.xaxis.major_label_orientation = np.pi / 2
bars = p.vbar(x='subject', top='step_n', width=0.9,
fill_color=factor_cmap('pilot', palette=Spectral10, factors=pilots),
legend='pilot',
source=ColumnDataSource(current_step))
p.legend.location = 'top_center'
p.legend.orientation = 'horizontal'
#p.add_layout(legend,'below')
show(p)
示例3: refresh_output
# 需要導入模塊: from bokeh import transform [as 別名]
# 或者: from bokeh.transform import factor_cmap [as 別名]
def refresh_output():
# get new data
df = get_data(expt_select.value)
freqs = df.frequency.unique()
cmap = factor_cmap('frequency', palette=bokeh.palettes.Category10[10], factors=freqs)
# update figure itself
p.y_range.factors = list(df.variable.unique())
(p.x_range.start, p.x_range.end) = (df.iloc[0].time_start, df.iloc[-1].time_end)
p.title.text = expt_select.value
# update data source for plot
hb.data_source.data = hb.data_source.from_df(df)
# update colourmap if necessary
hb.glyph.fill_color = cmap
示例4: report_html_groupby
# 需要導入模塊: from bokeh import transform [as 別名]
# 或者: from bokeh.transform import factor_cmap [as 別名]
def report_html_groupby(logger, iteration=0):
# type: (Logger, int) -> ()
"""
reporting bokeh groupby (html) to debug samples section
:param logger: The task.logger to use for sending the plots
:param iteration: The iteration number of the current reports
"""
output_file("bar_pandas_groupby_nested.html")
bokeh_df.cyl = bokeh_df.cyl.astype(str)
bokeh_df.yr = bokeh_df.yr.astype(str)
group = bokeh_df.groupby(by=["cyl", "mfr"])
index_cmap = factor_cmap(
"cyl_mfr", palette=Spectral5, factors=sorted(bokeh_df.cyl.unique()), end=1
)
p = figure(
plot_width=800,
plot_height=300,
title="Mean MPG by # Cylinders and Manufacturer",
x_range=group,
toolbar_location=None,
tooltips=[("MPG", "@mpg_mean"), ("Cyl, Mfr", "@cyl_mfr")],
)
p.vbar(
x="cyl_mfr",
top="mpg_mean",
width=1,
source=group,
line_color="white",
fill_color=index_cmap,
)
p.y_range.start = 0
p.x_range.range_padding = 0.05
p.xgrid.grid_line_color = None
p.xaxis.axis_label = "Manufacturer grouped by # Cylinders"
p.xaxis.major_label_orientation = 1.2
p.outline_line_color = None
save(p)
logger.report_media(
"html",
"pandas_groupby_nested_html",
iteration=iteration,
local_path="bar_pandas_groupby_nested.html",
)