當前位置: 首頁>>代碼示例>>Python>>正文


Python bokeh.plotting方法代碼示例

本文整理匯總了Python中bokeh.plotting方法的典型用法代碼示例。如果您正苦於以下問題:Python bokeh.plotting方法的具體用法?Python bokeh.plotting怎麽用?Python bokeh.plotting使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在bokeh的用法示例。


在下文中一共展示了bokeh.plotting方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: prepare_bls_datasource

# 需要導入模塊: import bokeh [as 別名]
# 或者: from bokeh import plotting [as 別名]
def prepare_bls_datasource(result, loc):
    """Prepare a bls result for bokeh plotting

    Parameters
    ----------
    result : BLS.model result
        The BLS model result to use
    loc : int
        Index of the "best" period. (Usually the max power)

    Returns
    -------
    bls_source : Bokeh.plotting.ColumnDataSource
        Bokeh style source for plotting
    """
    bls_source = ColumnDataSource(data=dict(
                                        period=result['period'],
                                        power=result['power'],
                                        depth=result['depth'],
                                        duration=result['duration'],
                                        transit_time=result['transit_time']))
    bls_source.selected.indices = [loc]
    return bls_source 
開發者ID:KeplerGO,項目名稱:lightkurve,代碼行數:25,代碼來源:interact_bls.py

示例2: prepare_folded_datasource

# 需要導入模塊: import bokeh [as 別名]
# 或者: from bokeh import plotting [as 別名]
def prepare_folded_datasource(folded_lc):
    """Prepare a FoldedLightCurve object for bokeh plotting.

    Parameters
    ----------
    folded_lc : lightkurve.FoldedLightCurve
        The folded lightcurve

    Returns
    -------
    folded_source : Bokeh.plotting.ColumnDataSource
        Bokeh style source for plotting
    """
    folded_src = ColumnDataSource(data=dict(
                                  phase=np.sort(folded_lc.time),
                                  flux=folded_lc.flux[np.argsort(folded_lc.time)]))
    return folded_src


# Helper functions for help text... 
開發者ID:KeplerGO,項目名稱:lightkurve,代碼行數:22,代碼來源:interact_bls.py

示例3: prepare_tpf_datasource

# 需要導入模塊: import bokeh [as 別名]
# 或者: from bokeh import plotting [as 別名]
def prepare_tpf_datasource(tpf, aperture_mask):
    """Prepare a bokeh DataSource object for selection glyphs

    Parameters
    ----------
    tpf : TargetPixelFile
        TPF to be shown.
    aperture_mask : boolean numpy array
        The Aperture mask applied at the startup of interact

    Returns
    -------
    tpf_source : bokeh.plotting.ColumnDataSource
        Bokeh object to be shown.
    """
    npix = tpf.flux[0, :, :].size
    pixel_index_array = np.arange(0, npix, 1).reshape(tpf.flux[0].shape)
    xx = tpf.column + np.arange(tpf.shape[2])
    yy = tpf.row + np.arange(tpf.shape[1])
    xa, ya = np.meshgrid(xx, yy)
    tpf_source = ColumnDataSource(data=dict(xx=xa.astype(float), yy=ya.astype(float)))
    tpf_source.selected.indices = pixel_index_array[aperture_mask].reshape(-1).tolist()
    return tpf_source 
開發者ID:KeplerGO,項目名稱:lightkurve,代碼行數:25,代碼來源:interact.py

示例4: get_lightcurve_y_limits

# 需要導入模塊: import bokeh [as 別名]
# 或者: from bokeh import plotting [as 別名]
def get_lightcurve_y_limits(lc_source):
    """Compute sensible defaults for the Y axis limits of the lightcurve plot.

    Parameters
    ----------
    lc_source : bokeh.plotting.ColumnDataSource
        The lightcurve being shown.

    Returns
    -------
    ymin, ymax : float, float
        Flux min and max limits.
    """
    with warnings.catch_warnings():  # Ignore warnings due to NaNs
        warnings.simplefilter("ignore", AstropyUserWarning)
        flux = sigma_clip(lc_source.data['flux'], sigma=5, masked=False)
    low, high = np.nanpercentile(flux, (1, 99))
    margin = 0.10 * (high - low)
    return low - margin, high + margin 
開發者ID:KeplerGO,項目名稱:lightkurve,代碼行數:21,代碼來源:interact.py

示例5: _initialize_figure

# 需要導入模塊: import bokeh [as 別名]
# 或者: from bokeh import plotting [as 別名]
def _initialize_figure(self, x_axis_type, y_axis_type):
        x_range, y_range = None, None
        if x_axis_type == 'categorical':
            x_range = []
            x_axis_type = 'auto'
        if y_axis_type == 'categorical':
            y_range = []
            y_axis_type = 'auto'
        if x_axis_type == 'density':
            x_axis_type = 'linear'
        if y_axis_type == 'density':
            y_axis_type = 'linear'
        figure = bokeh.plotting.figure(
            x_range=x_range,
            y_range=y_range,
            y_axis_type=y_axis_type,
            x_axis_type=x_axis_type,
            plot_width=self.style.plot_width,
            plot_height=self.style.plot_height,
            tools='save',
            # toolbar_location='right',
            active_drag=None)
        return figure 
開發者ID:spotify,項目名稱:chartify,代碼行數:25,代碼來源:chart.py

示例6: area

# 需要導入模塊: import bokeh [as 別名]
# 或者: from bokeh import plotting [as 別名]
def area(self, x=None, y=None, **kwds):
        """
        Area plot

        Parameters
        ----------
        x, y : label or position, optional
            Coordinates for each point.
        `**kwds` : optional
            Additional keyword arguments are documented in
            :meth:`pandas.DataFrame.plot_bokeh`.

        Returns
        -------
        Bokeh.plotting.figure
        """
        return self(kind="area", x=x, y=y, **kwds) 
開發者ID:PatrikHlobil,項目名稱:Pandas-Bokeh,代碼行數:19,代碼來源:plot.py

示例7: framewise

# 需要導入模塊: import bokeh [as 別名]
# 或者: from bokeh import plotting [as 別名]
def framewise(self):
        """
        Property to determine whether the current frame should have
        framewise normalization enabled. Required for bokeh plotting
        classes to determine whether to send updated ranges for each
        frame.
        """
        current_frames = [el for f in self.traverse(lambda x: x.current_frame)
                          for el in (f.traverse(lambda x: x, [Element])
                                     if f else [])]
        current_frames = util.unique_iterator(current_frames)
        return any(self.lookup_options(frame, 'norm').options.get('framewise')
                   for frame in current_frames) 
開發者ID:holoviz,項目名稱:holoviews,代碼行數:15,代碼來源:element.py

示例8: _get_figure

# 需要導入模塊: import bokeh [as 別名]
# 或者: from bokeh import plotting [as 別名]
def _get_figure(col):
    """Gets the bokeh.plotting.figure from a bokeh.layouts.column."""

    from bokeh.layouts import column
    from bokeh.plotting import figure

    for children in col.children:
        if isinstance(children, type(figure())):
            return children
        elif isinstance(children, type(column())):
            return _get_figure(children) 
開發者ID:PatrikHlobil,項目名稱:Pandas-Bokeh,代碼行數:13,代碼來源:geoplot.py

示例9: plot_hail_hist

# 需要導入模塊: import bokeh [as 別名]
# 或者: from bokeh import plotting [as 別名]
def plot_hail_hist(
    hist_data: hl.Struct,
    title: str = "Plot",
    log: bool = False,
    fill_color: str = "#033649",
    outlier_fill_color: str = "#036564",
    line_color: str = "#033649",
    hover_mode: str = "mouse",
    hide_zeros: bool = False,
) -> bokeh.plotting.Figure:
    """
    hist_data can (and should) come straight from ht.aggregate(hl.agg.hist(ht.data, start, end, bins))

    :param hist_data: Data to plot
    :param title: Plot title
    :param log: Whether the y-axis should be log
    :param fill_color: Color to fill the histogram bars that fall within the hist boundaries
    :param outlier_fill_color: Color to fill the histogram bars that fall outside the hist boundaries
    :param line_color: Color of the lines around the histogram bars
    :param hover_mode: Hover mode; one of 'mouse' (default), 'vline' or 'hline'
    :param hide_zeros: Remove hist bars with 0 count
    :return: Histogram plot
    """

    return plot_multi_hail_hist(
        {"hist": hist_data},
        title=title,
        log=log,
        fill_color={"hist": fill_color},
        outlier_fill_color={"hist": outlier_fill_color},
        line_color=line_color,
        hover_mode=hover_mode,
        hide_zeros=hide_zeros,
        alpha=1.0,
    ) 
開發者ID:broadinstitute,項目名稱:gnomad_methods,代碼行數:37,代碼來源:plotting.py

示例10: _make_echelle_elements

# 需要導入模塊: import bokeh [as 別名]
# 或者: from bokeh import plotting [as 別名]
def _make_echelle_elements(self, deltanu, cmap='viridis',
        minimum_frequency=None, maximum_frequency=None, smooth_filter_width=.1,
        scale='linear', plot_width=490, plot_height=340, title='Echelle'):
        """Helper function to make the elements of the echelle diagram for bokeh plotting.
        """
        if not hasattr(deltanu, 'unit'):
            deltanu = deltanu * self.periodogram.frequency.unit

        if smooth_filter_width:
            pgsmooth = self.periodogram.smooth(filter_width=smooth_filter_width)
            freq = pgsmooth.frequency  # Makes code below more readable below
        else:
            freq = self.periodogram.frequency  # Makes code below more readable

        ep, x_f, y_f = self._clean_echelle(deltanu=deltanu,
                                           minimum_frequency=minimum_frequency,
                                           maximum_frequency=maximum_frequency,
                                           smooth_filter_width=smooth_filter_width,
                                           scale=scale)

        fig = figure(plot_width=plot_width, plot_height=plot_height,
                     x_range=(0, 1), y_range=(y_f[0].value, y_f[-1].value),
                     title=title, tools='pan,box_zoom,reset',
                     toolbar_location="above",
                     border_fill_color="white")

        fig.yaxis.axis_label = r'Frequency [{}]'.format(freq.unit.to_string())
        fig.xaxis.axis_label = r'Frequency / {:.3f} Mod. 1'.format(deltanu)

        lo, hi = np.nanpercentile(ep.value, [0.1, 99.9])
        vlo, vhi = 0.3 * lo, 1.7 * hi
        vstep = (lo - hi)/500
        color_mapper = LogColorMapper(palette="RdYlGn10", low=lo, high=hi)

        fig.image(image=[ep.value], x=0, y=y_f[0].value,
                  dw=1, dh=y_f[-1].value,
                  color_mapper=color_mapper, name='img')

        stretch_slider = RangeSlider(start=vlo,
                                     end=vhi,
                                     step=vstep,
                                     title='',
                                     value=(lo, hi),
                                     orientation='vertical',
                                     width=10,
                                     height=230,
                                     direction='rtl',
                                     show_value=False,
                                     sizing_mode='fixed',
                                     name='stretch')

        def stretch_change_callback(attr, old, new):
            """TPF stretch slider callback."""
            fig.select('img')[0].glyph.color_mapper.high = new[1]
            fig.select('img')[0].glyph.color_mapper.low = new[0]

        stretch_slider.on_change('value', stretch_change_callback)
        return fig, stretch_slider 
開發者ID:KeplerGO,項目名稱:lightkurve,代碼行數:60,代碼來源:core.py

示例11: make_lightcurve_figure_elements

# 需要導入模塊: import bokeh [as 別名]
# 或者: from bokeh import plotting [as 別名]
def make_lightcurve_figure_elements(lc, model_lc, lc_source, model_lc_source, help_source):
    """Make a figure with a simple light curve scatter and model light curve line.

    Parameters
    ----------
    lc : lightkurve.LightCurve
        Light curve to plot
    model_lc :  lightkurve.LightCurve
        Model light curve to plot
    lc_source : bokeh.plotting.ColumnDataSource
        Bokeh style source object for plotting light curve
    model_lc_source : bokeh.plotting.ColumnDataSource
        Bokeh style source object for plotting model light curve
    help_source : bokeh.plotting.ColumnDataSource
        Bokeh style source object for rendering help button

    Returns
    -------
    fig : bokeh.plotting.figure
        Bokeh figure object
    """
    # Make figure
    fig = figure(title='Light Curve', plot_height=300, plot_width=900,
                 tools="pan,box_zoom,reset",
                 toolbar_location="below",
                 border_fill_color="#FFFFFF", active_drag="box_zoom")
    fig.title.offset = -10
    fig.yaxis.axis_label = 'Flux (e/s)'
    if lc.time.format == 'bkjd':
        fig.xaxis.axis_label = 'Time - 2454833 (days)'
    elif lc.time.format == 'btjd':
        fig.xaxis.axis_label = 'Time - 2457000 (days)'
    else:
        fig.xaxis.axis_label = 'Time (days)'
    ylims = [np.nanmin(lc.flux.value), np.nanmax(lc.flux.value)]
    fig.y_range = Range1d(start=ylims[0], end=ylims[1])

    # Add light curve
    fig.circle('time', 'flux', line_width=1, color='#191919',
               source=lc_source, nonselection_line_color='#191919', size=0.5,
               nonselection_line_alpha=1.0)
    # Add model
    fig.step('time', 'flux', line_width=1, color='firebrick',
             source=model_lc_source, nonselection_line_color='firebrick',
             nonselection_line_alpha=1.0)

    # Help button
    question_mark = Text(x="time", y="flux", text="helpme", text_color="grey",
                         text_align='center', text_baseline="middle",
                         text_font_size='12px', text_font_style='bold',
                         text_alpha=0.6)
    fig.add_glyph(help_source, question_mark)
    help = fig.circle('time', 'flux', alpha=0.0, size=15, source=help_source,
                      line_width=2, line_color='grey', line_alpha=0.6)
    tooltips = help_source.data['help'][0]
    fig.add_tools(HoverTool(tooltips=tooltips, renderers=[help],
                            mode='mouse', point_policy="snap_to_data"))
    return fig 
開發者ID:KeplerGO,項目名稱:lightkurve,代碼行數:60,代碼來源:interact_bls.py

示例12: make_folded_figure_elements

# 需要導入模塊: import bokeh [as 別名]
# 或者: from bokeh import plotting [as 別名]
def make_folded_figure_elements(f, f_model_lc, f_source, f_model_lc_source, help_source):
    """Make a scatter plot of a FoldedLightCurve.

    Parameters
    ----------
    f : lightkurve.LightCurve
        Folded light curve to plot
    f_model_lc :  lightkurve.LightCurve
        Model folded light curve to plot
    f_source : bokeh.plotting.ColumnDataSource
        Bokeh style source object for plotting folded light curve
    f_model_lc_source : bokeh.plotting.ColumnDataSource
        Bokeh style source object for plotting model folded light curve
    help_source : bokeh.plotting.ColumnDataSource
        Bokeh style source object for rendering help button

    Returns
    -------
    fig : bokeh.plotting.figure
        Bokeh figure object
    """

    # Build Figure
    fig = figure(title='Folded Light Curve', plot_height=340, plot_width=450,
                 tools="pan,box_zoom,reset",
                 toolbar_location="below",
                 border_fill_color="#FFFFFF", active_drag="box_zoom")
    fig.title.offset = -10
    fig.yaxis.axis_label = 'Flux'
    fig.xaxis.axis_label = 'Phase'

    # Scatter point for data
    fig.circle('phase', 'flux', line_width=1, color='#191919',
               source=f_source, nonselection_line_color='#191919',
               nonselection_line_alpha=1.0, size=0.1)

    # Line plot for model
    fig.step('phase', 'flux', line_width=3, color='firebrick',
             source=f_model_lc_source, nonselection_line_color='firebrick',
             nonselection_line_alpha=1.0)

    # Help button
    question_mark = Text(x="phase", y="flux", text="helpme", text_color="grey",
                         text_align='center', text_baseline="middle",
                         text_font_size='12px', text_font_style='bold',
                         text_alpha=0.6)
    fig.add_glyph(help_source, question_mark)
    help = fig.circle('phase', 'flux', alpha=0.0, size=15, source=help_source,
                      line_width=2, line_color='grey', line_alpha=0.6)

    tooltips = help_source.data['help'][0]
    fig.add_tools(HoverTool(tooltips=tooltips, renderers=[help],
                            mode='mouse', point_policy="snap_to_data"))
    return fig 
開發者ID:KeplerGO,項目名稱:lightkurve,代碼行數:56,代碼來源:interact_bls.py

示例13: get_plotting_function

# 需要導入模塊: import bokeh [as 別名]
# 或者: from bokeh import plotting [as 別名]
def get_plotting_function(plot_name, plot_module, backend):
    """Return plotting function for correct backend."""
    _backend = {
        "mpl": "matplotlib",
        "bokeh": "bokeh",
        "matplotlib": "matplotlib",
    }

    if backend is None:
        backend = rcParams["plot.backend"]
    backend = backend.lower()

    try:
        backend = _backend[backend]
    except KeyError:
        raise KeyError(
            "Backend {} is not implemented. Try backend in {}".format(
                backend, set(_backend.values())
            )
        )

    if backend == "bokeh":
        try:
            import bokeh

            assert packaging.version.parse(bokeh.__version__) >= packaging.version.parse("1.4.0")

        except (ImportError, AssertionError):
            raise ImportError(
                "'bokeh' backend needs Bokeh (1.4.0+) installed." " Please upgrade or install"
            )

    # Perform import of plotting method
    # TODO: Convert module import to top level for all plots
    module = importlib.import_module(
        "arviz.plots.backends.{backend}.{plot_module}".format(
            backend=backend, plot_module=plot_module
        )
    )

    plotting_method = getattr(module, plot_name)

    return plotting_method 
開發者ID:arviz-devs,項目名稱:arviz,代碼行數:45,代碼來源:plot_utils.py

示例14: set_legend_location

# 需要導入模塊: import bokeh [as 別名]
# 或者: from bokeh import plotting [as 別名]
def set_legend_location(self, location, orientation='horizontal'):
        """Set the legend location.

        Args:
            location (str or tuple): Legend location. One of:
            - Outside of the chart: 'outside_top', 'outside_bottom',
                  'outside_right'
            - Within the chart area: 'top_left', 'top_center',
                  'top_right', 'center_left', 'center', 'center_right',
                  'bottom_left', 'bottom_center', 'bottom_right'
            - Coordinates: Tuple(Float, Float)
            - None: Removes the legend.
            orientation (str): 'horizontal' or 'vertical'

        Returns:
            Current chart object
        """

        def add_outside_legend(legend_location, layout_location):
            self.figure.legend.location = legend_location
            if not self.figure.legend:
                warnings.warn(
                    """
                    Legend location will not apply.
                    Set the legend after plotting data.
                    """, UserWarning)
                return self
            new_legend = self.figure.legend[0]
            new_legend.orientation = orientation
            self.figure.add_layout(new_legend, layout_location)

        if location == 'outside_top':
            add_outside_legend('top_left', 'above')
            # Re-render the subtitle so that it appears over the legend.
            subtitle_index = self.figure.renderers.index(self._subtitle_glyph)
            self.figure.renderers.pop(subtitle_index)
            self._subtitle_glyph = self._add_subtitle_to_figure(
                self._subtitle_glyph.text)
        elif location == 'outside_bottom':
            add_outside_legend('bottom_center', 'below')
        elif location == 'outside_right':
            add_outside_legend('top_left', 'right')
        elif location is None:
            self.figure.legend.visible = False
        else:
            self.figure.legend.location = location
            self.figure.legend.orientation = orientation

        vertical = self.axes._vertical
        # Reverse the legend order
        if self._reverse_vertical_legend:
            if orientation == 'vertical' and vertical:
                self.figure.legend[0].items = list(
                    reversed(self.figure.legend[0].items))
        return self 
開發者ID:spotify,項目名稱:chartify,代碼行數:57,代碼來源:chart.py

示例15: _init_plot

# 需要導入模塊: import bokeh [as 別名]
# 或者: from bokeh import plotting [as 別名]
def _init_plot(self, key, element, plots, ranges=None):
        """
        Initializes Bokeh figure to draw Element into and sets basic
        figure and axis attributes including axes types, labels,
        titles and plot height and width.
        """
        subplots = list(self.subplots.values()) if self.subplots else []

        axis_types, labels, plot_ranges = self._axes_props(plots, subplots, element, ranges)
        xlabel, ylabel, _ = labels
        x_axis_type, y_axis_type = axis_types
        properties = dict(plot_ranges)
        properties['x_axis_label'] = xlabel if 'x' in self.labelled or self.xlabel else ' '
        properties['y_axis_label'] = ylabel if 'y' in self.labelled or self.ylabel else ' '

        if not self.show_frame:
            properties['outline_line_alpha'] = 0

        if self.show_title and self.adjoined is None:
            title = self._format_title(key, separator=' ')
        else:
            title = ''

        if self.toolbar != 'disable':
            tools = self._init_tools(element)
            properties['tools'] = tools
            properties['toolbar_location'] = self.toolbar
        else:
            properties['tools'] = []
            properties['toolbar_location'] = None

        if self.renderer.webgl:
            properties['output_backend'] = 'webgl'

        properties.update(**self._plot_properties(key, element))

        with warnings.catch_warnings():
            # Bokeh raises warnings about duplicate tools but these
            # are not really an issue
            warnings.simplefilter('ignore', UserWarning)
            return bokeh.plotting.Figure(x_axis_type=x_axis_type,
                                         y_axis_type=y_axis_type, title=title,
                                         **properties) 
開發者ID:holoviz,項目名稱:holoviews,代碼行數:45,代碼來源:element.py


注:本文中的bokeh.plotting方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。