本文整理匯總了Python中bokeh.palettes.viridis方法的典型用法代碼示例。如果您正苦於以下問題:Python palettes.viridis方法的具體用法?Python palettes.viridis怎麽用?Python palettes.viridis使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類bokeh.palettes
的用法示例。
在下文中一共展示了palettes.viridis方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _create_fill_map
# 需要導入模塊: from bokeh import palettes [as 別名]
# 或者: from bokeh.palettes import viridis [as 別名]
def _create_fill_map(
source: ColumnDataSource, source_column: str = None
) -> Tuple[Union[factor_cmap, linear_cmap], Optional[ColorBar]]:
"""Create factor map or linear map based on `source_column`."""
fill_map = "navy"
color_bar = None
if source_column is None or source_column not in source.data:
return fill_map, color_bar
col_kind = source.data[source_column].dtype.kind
if col_kind in ["b", "O"]:
s_values = set(source.data[source_column])
if np.nan in s_values:
s_values.remove(np.nan)
values = list(s_values)
fill_map = factor_cmap(
source_column, palette=viridis(max(3, len(values))), factors=values
)
elif col_kind in ["i", "u", "f", "M"]:
values = [val for val in source.data[source_column] if not np.isnan(val)]
fill_map = linear_cmap(
field_name=source_column,
palette=viridis(256),
low=np.min(values),
high=np.max(values),
)
color_bar = ColorBar(
color_mapper=fill_map["transform"], width=8, location=(0, 0) # type: ignore
)
return fill_map, color_bar
# pylint: disable=too-many-arguments
示例2: _get_color_palette
# 需要導入模塊: from bokeh import palettes [as 別名]
# 或者: from bokeh.palettes import viridis [as 別名]
def _get_color_palette(series_count):
palette_size = min(256, series_count + int(series_count / 5))
return viridis(palette_size), palette_size
示例3: graph
# 需要導入模塊: from bokeh import palettes [as 別名]
# 或者: from bokeh.palettes import viridis [as 別名]
def graph(_csv, _project_code, graph_topics):
figures = []
graph_x_range = None
for topic in graph_topics.keys():
# data source
csv_topic = _csv.copy().filter(regex=topic)
csv_topic["timeStamp"] = _csv.timeStamp.copy()
csv_topic.set_index('timeStamp', inplace=True)
csv_topic.index = pd.to_datetime(csv_topic.index)
csv_topic.sort_index(inplace=True)
df_columns_count = csv_topic.shape[1]
df_rows_count = csv_topic.shape[0]
colors = viridis(df_columns_count)
topic_title = f"{_project_code} - RVT - {graph_topics[topic]}"
# print(topic_title)
# print(csv_topic.head())
line_opt = dict(line_width=3, alpha=0.8)
hover = HoverTool(tooltips=[("name", "@name"),
("time", "@time"),
("count", "@count"),
]
)
tools_opt = [hover, "save", "pan", "wheel_zoom", "reset"]
graph_opt = dict(width=900, x_axis_type="datetime",
toolbar_location="left", tools=tools_opt, toolbar_sticky=False,
background_fill_alpha=0, border_fill_alpha=0)
if graph_x_range:
topic_figure = figure(title=topic_title, x_range=graph_x_range, **graph_opt)
else:
topic_figure = figure(title=topic_title, **graph_opt)
graph_x_range = topic_figure.x_range
# glyphs
# print(len(cds.column_names))
for i, col_name in enumerate(csv_topic.columns):
if topic in col_name:
# print(col_name)
csv_topic["color"] = colors[i]
name_list = [col_name[2:] for i in range(df_rows_count)]
cds = ColumnDataSource(data=dict(x=csv_topic.index.values,
y=csv_topic[col_name].values,
name=name_list,
count=csv_topic[col_name].values,
time=csv_topic.index.strftime("%Y-%m-%d %H:%M:%S"),
)
)
topic_figure.line("x", "y",
color=colors[i], name="name", source=cds, legend=col_name[2:],
**line_opt
)
figures.append(style_plot(topic_figure))
return figures
示例4: update_graph
# 需要導入模塊: from bokeh import palettes [as 別名]
# 或者: from bokeh.palettes import viridis [as 別名]
def update_graph(jobs_db, graph_path):
rows = []
for job in jobs_db.all():
rows.append([job.get("<project_code>"), job.get("<command>"), job.get(">start_time"), job.get("timeout")])
df = pd.DataFrame(rows, columns=["project", "command", "start", "timeout"])
df = df.sort_values(by="project", ascending=False)
df["start"] = pd.to_datetime(df["start"], format="%H:%M:%S")
df["start_txt"] = df.start.astype("str").str.extract(r"(\d+:\d+)", expand=True) + " h"
df["timeout_txt"] = df['timeout'].copy().astype('str') + " seconds"
df["timeout"] = df['timeout'].astype('timedelta64[s]')
df["end"] = pd.to_datetime(df["start"], format="%H:%M:%S") + df["timeout"]
colors = viridis(len(df["project"]))
output_file(graph_path, title="rvt_model_services_jobs", mode="inline")
cds = ColumnDataSource(data=dict(start=df["start"].values,
end=df["end"].values,
name=df["project"],
timeout=df["timeout_txt"],
start_txt=df["start_txt"],
command=df["command"],
color=colors,
)
)
hover = HoverTool(tooltips=[("project", "@name"),
("command", "@command"),
("start time:", "@start_txt"),
("timeout:", "@timeout"),
])
tools_opt = [hover, "save", "pan", "wheel_zoom", "box_zoom", "reset"]
graph_opt = dict(width=900, x_axis_type="datetime",
tools=tools_opt,
toolbar_location="right",
background_fill_alpha=0, border_fill_alpha=0)
jobs_viz = figure(title="rvt_model_service_jobs",
y_range=list(df["project"].unique()),
**graph_opt)
jobs_viz.hbar(source=cds,
y="name",
left="start",
right="end",
height=1,
color="color",
)
style_plot(jobs_viz)
save(jobs_viz)