當前位置: 首頁>>代碼示例>>Python>>正文


Python models.LabelSet方法代碼示例

本文整理匯總了Python中bokeh.models.LabelSet方法的典型用法代碼示例。如果您正苦於以下問題:Python models.LabelSet方法的具體用法?Python models.LabelSet怎麽用?Python models.LabelSet使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在bokeh.models的用法示例。


在下文中一共展示了models.LabelSet方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: visualize_sentences

# 需要導入模塊: from bokeh import models [as 別名]
# 或者: from bokeh.models import LabelSet [as 別名]
def visualize_sentences(vecs, sentences, palette="Viridis256", filename="/notebooks/embedding/sentences.png",
                        use_notebook=False):
    tsne = TSNE(n_components=2)
    tsne_results = tsne.fit_transform(vecs)
    df = pd.DataFrame(columns=['x', 'y', 'sentence'])
    df['x'], df['y'], df['sentence'] = tsne_results[:, 0], tsne_results[:, 1], sentences
    source = ColumnDataSource(ColumnDataSource.from_df(df))
    labels = LabelSet(x="x", y="y", text="sentence", y_offset=8,
                      text_font_size="12pt", text_color="#555555",
                      source=source, text_align='center')
    color_mapper = LinearColorMapper(palette=palette, low=min(tsne_results[:, 1]), high=max(tsne_results[:, 1]))
    plot = figure(plot_width=900, plot_height=900)
    plot.scatter("x", "y", size=12, source=source, color={'field': 'y', 'transform': color_mapper}, line_color=None, fill_alpha=0.8)
    plot.add_layout(labels)
    if use_notebook:
        output_notebook()
        show(plot)
    else:
        export_png(plot, filename)
        print("save @ " + filename) 
開發者ID:ratsgo,項目名稱:embedding,代碼行數:22,代碼來源:visualize_utils.py

示例2: visualize_words

# 需要導入模塊: from bokeh import models [as 別名]
# 或者: from bokeh.models import LabelSet [as 別名]
def visualize_words(words, vecs, palette="Viridis256", filename="/notebooks/embedding/words.png",
                    use_notebook=False):
    tsne = TSNE(n_components=2)
    tsne_results = tsne.fit_transform(vecs)
    df = pd.DataFrame(columns=['x', 'y', 'word'])
    df['x'], df['y'], df['word'] = tsne_results[:, 0], tsne_results[:, 1], list(words)
    source = ColumnDataSource(ColumnDataSource.from_df(df))
    labels = LabelSet(x="x", y="y", text="word", y_offset=8,
                      text_font_size="15pt", text_color="#555555",
                      source=source, text_align='center')
    color_mapper = LinearColorMapper(palette=palette, low=min(tsne_results[:, 1]), high=max(tsne_results[:, 1]))
    plot = figure(plot_width=900, plot_height=900)
    plot.scatter("x", "y", size=12, source=source, color={'field': 'y', 'transform': color_mapper}, line_color=None,
                 fill_alpha=0.8)
    plot.add_layout(labels)
    if use_notebook:
        output_notebook()
        show(plot)
    else:
        export_png(plot, filename)
        print("save @ " + filename) 
開發者ID:ratsgo,項目名稱:embedding,代碼行數:23,代碼來源:visualize_utils.py

示例3: visualize_homonym

# 需要導入模塊: from bokeh import models [as 別名]
# 或者: from bokeh.models import LabelSet [as 別名]
def visualize_homonym(homonym, tokenized_sentences, vecs, model_name, palette="Viridis256",
                      filename="/notebooks/embedding/homonym.png", use_notebook=False):
    # process sentences
    token_list, processed_sentences = [], []
    for tokens in tokenized_sentences:
        token_list.extend(tokens)
        sentence = []
        for token in tokens:
            if model_name == "bert":
                processed_token = token.replace("##", "")
            else:
                processed_token = token
            if token == homonym:
                processed_token = "\"" + processed_token + "\""
            sentence.append(processed_token)
        processed_sentences.append(' '.join(sentence))
    # dimension reduction
    tsne = TSNE(n_components=2)
    tsne_results = tsne.fit_transform(vecs[1:])
    # only plot the word representation of interest
    interest_vecs, idx = np.zeros((len(tokenized_sentences), 2)), 0
    for word, vec in zip(token_list, tsne_results):
        if word == homonym:
            interest_vecs[idx] = vec
            idx += 1
    df = pd.DataFrame(columns=['x', 'y', 'annotation'])
    df['x'], df['y'], df['annotation'] = interest_vecs[:, 0], interest_vecs[:, 1], processed_sentences
    source = ColumnDataSource(ColumnDataSource.from_df(df))
    labels = LabelSet(x="x", y="y", text="annotation", y_offset=8,
                      text_font_size="12pt", text_color="#555555",
                      source=source, text_align='center')
    color_mapper = LinearColorMapper(palette=palette, low=min(tsne_results[:, 1]), high=max(tsne_results[:, 1]))
    plot = figure(plot_width=900, plot_height=900)
    plot.scatter("x", "y", size=12, source=source, color={'field': 'y', 'transform': color_mapper},
                 line_color=None,
                 fill_alpha=0.8)
    plot.add_layout(labels)
    if use_notebook:
        output_notebook()
        show(plot)
    else:
        export_png(plot, filename)
        print("save @ " + filename) 
開發者ID:ratsgo,項目名稱:embedding,代碼行數:45,代碼來源:visualize_utils.py

示例4: visualize_self_attention_scores

# 需要導入模塊: from bokeh import models [as 別名]
# 或者: from bokeh.models import LabelSet [as 別名]
def visualize_self_attention_scores(tokens, scores, filename="/notebooks/embedding/self-attention.png",
                                    use_notebook=False):
    mean_prob = np.mean(scores)
    weighted_edges = []
    for idx_1, token_prob_dist_1 in enumerate(scores):
        for idx_2, el in enumerate(token_prob_dist_1):
            if idx_1 == idx_2 or el < mean_prob:
                weighted_edges.append((tokens[idx_1], tokens[idx_2], 0))
            else:
                weighted_edges.append((tokens[idx_1], tokens[idx_2], el))
    max_prob = np.max([el[2] for el in weighted_edges])
    weighted_edges = [(el[0], el[1], (el[2] - mean_prob) / (max_prob - mean_prob)) for el in weighted_edges]

    G = nx.Graph()
    G.add_nodes_from([el for el in tokens])
    G.add_weighted_edges_from(weighted_edges)

    plot = Plot(plot_width=500, plot_height=500,
                x_range=Range1d(-1.1, 1.1), y_range=Range1d(-1.1, 1.1))
    plot.add_tools(HoverTool(tooltips=None), TapTool(), BoxSelectTool())

    graph_renderer = from_networkx(G, nx.circular_layout, scale=1, center=(0, 0))

    graph_renderer.node_renderer.data_source.data['colors'] = Spectral8[:len(tokens)]
    graph_renderer.node_renderer.glyph = Circle(size=15, line_color=None, fill_color="colors")
    graph_renderer.node_renderer.selection_glyph = Circle(size=15, fill_color="colors")
    graph_renderer.node_renderer.hover_glyph = Circle(size=15, fill_color="grey")

    graph_renderer.edge_renderer.data_source.data["line_width"] = [G.get_edge_data(a, b)['weight'] * 3 for a, b in
                                                                   G.edges()]
    graph_renderer.edge_renderer.glyph = MultiLine(line_color="#CCCCCC", line_width={'field': 'line_width'})
    graph_renderer.edge_renderer.selection_glyph = MultiLine(line_color="grey", line_width=5)
    graph_renderer.edge_renderer.hover_glyph = MultiLine(line_color="grey", line_width=5)

    graph_renderer.selection_policy = NodesAndLinkedEdges()
    graph_renderer.inspection_policy = EdgesAndLinkedNodes()

    plot.renderers.append(graph_renderer)

    x, y = zip(*graph_renderer.layout_provider.graph_layout.values())
    data = {'x': list(x), 'y': list(y), 'connectionNames': tokens}
    source = ColumnDataSource(data)
    labels = LabelSet(x='x', y='y', text='connectionNames', source=source, text_align='center')
    plot.renderers.append(labels)
    plot.add_tools(SaveTool())
    if use_notebook:
        output_notebook()
        show(plot)
    else:
        export_png(plot, filename)
        print("save @ " + filename) 
開發者ID:ratsgo,項目名稱:embedding,代碼行數:53,代碼來源:visualize_utils.py

示例5: make_plot

# 需要導入模塊: from bokeh import models [as 別名]
# 或者: from bokeh.models import LabelSet [as 別名]
def make_plot(title='Forecasts'):
    '''
    # Generates the axes and background for the data to be plot on
    #
    :param title:
    :return:
    '''
    plot = figure(plot_height=500, plot_width=500, tools=["pan,reset,save, wheel_zoom", hover],
                     x_range=[-4, 4], y_range=[-4, 4])

    plot.title.text = title

    # Mark the 8 sectors
    x = 4
    y = 0.707107
    linewidth = 0.25
    plot.line([-x, -y], [-x, -y], line_width=0.5, line_alpha=0.6)
    plot.line([y, x], [y, x], line_width=0.5, line_alpha=0.6)
    plot.line([-x, -y], [x, y], line_width=0.5, line_alpha=0.6)
    plot.line([y, x], [-y, -x], line_width=0.5, line_alpha=0.6)
    plot.line([-x, -1], [0, 0], line_width=0.5, line_alpha=0.6)
    plot.line([1, x], [0, 0], line_width=0.5, line_alpha=0.6)
    plot.line([0, 0], [-x, -1], line_width=0.5, line_alpha=0.6)
    plot.line([0, 0], [1, x], line_width=0.5, line_alpha=0.6)

    xt, yt = 3., 1.5
    phase_marker_source = ColumnDataSource(data=dict(xt=[-xt, -yt, yt, xt, xt, yt, -yt, -xt],
                                                     yt=[-yt, -xt, -xt, -yt, yt, xt, xt, yt],
                                                     phase_labels=[str(i) for i in range(1, 9)]))
    labels = LabelSet(x='xt', y='yt', text='phase_labels', level='glyph',
                      x_offset=0, y_offset=0, source=phase_marker_source,
                      render_mode='canvas', text_color='grey', text_font_size="30pt", text_alpha=0.25)
    plot.add_layout(labels)
    plot.circle([0], [0], radius=1, color="white", line_color='grey', alpha=0.6)

    phase_name_source = ColumnDataSource(dict(x=[0, 0], y=[-3.75, 3.], text=['Indian \n Ocean', 'Western \n Pacific']))
    glyph = Text(x="x", y="y", text="text", angle=0., text_color="grey", text_align='center', text_alpha=0.25)
    plot.add_glyph(phase_name_source, glyph)

    phase_name_source = ColumnDataSource(dict(x=[-3.], y=[0], text=['West. Hem\n Africa']))
    glyph = Text(x="x", y="y", text="text", angle=np.pi / 2., text_color="grey", text_align='center', text_alpha=0.25)
    plot.add_glyph(phase_name_source, glyph)

    phase_name_source = ColumnDataSource(dict(x=[3.], y=[0], text=['Maritime\n continent']))
    glyph = Text(x="x", y="y", text="text", angle=-np.pi / 2., text_color="grey", text_align='center', text_alpha=0.25)
    plot.add_glyph(phase_name_source, glyph)

    plot.xaxis[0].axis_label = 'RMM1'
    plot.yaxis[0].axis_label = 'RMM2'

    return plot 
開發者ID:MetOffice,項目名稱:forest,代碼行數:53,代碼來源:main.py

示例6: plot_waterfall_relative_importance

# 需要導入模塊: from bokeh import models [as 別名]
# 或者: from bokeh.models import LabelSet [as 別名]
def plot_waterfall_relative_importance(self,incremental_rsquare_df):
		index = list(incremental_rsquare_df['Features'].values)
		data = {'Percentage Relative Importance': list(incremental_rsquare_df['percentage_incremental_r2'].values)}
		df = pd.DataFrame(data=data,index=index)
		
		net = df['Percentage Relative Importance'].sum()
		# print("Net ",net)

		df['running_total'] = df['Percentage Relative Importance'].cumsum()
		df['y_start'] = df['running_total'] - df['Percentage Relative Importance']

		df['label_pos'] = df['running_total']

		df_net = pd.DataFrame.from_records([(net, net, 0, net)],
			columns=['Percentage Relative Importance', 'running_total', 'y_start', 'label_pos'],index=["net"])
		
		df = df.append(df_net)

		df['color'] = '#1de9b6'
		df.loc[df['Percentage Relative Importance'] == 100, 'color'] = '#29b6f6'
		df.loc[df['Percentage Relative Importance'] < 0, 'label_pos'] = df.label_pos - 10000
		df["bar_label"] = df["Percentage Relative Importance"].map('{:,.1f}'.format)

		TOOLS = "reset,save"
		source = ColumnDataSource(df)
		p = figure(tools=TOOLS, x_range=list(df.index), y_range=(0, net+10),
			plot_width=1000, title = "Percentage Relative Importance Waterfall")

		p.segment(x0='index', y0='y_start', x1="index", y1='running_total',
			source=source, color="color", line_width=35)

		p.grid.grid_line_alpha=0.4
		p.yaxis[0].formatter = NumeralTickFormatter(format="(0 a)")
		p.xaxis.axis_label = "Predictors"
		p.yaxis.axis_label = "Percentage Relative Importance(%)"
		p.xaxis.axis_label_text_font_size='12pt'
		p.yaxis.axis_label_text_font_size='12pt'

		labels = LabelSet(x='index', y='label_pos', text='bar_label',
		text_font_size="11pt", level='glyph',
		x_offset=-14, y_offset=0, source=source)
		p.add_layout(labels)
		p.xaxis.major_label_orientation = -math.pi/4
		show(p) 
開發者ID:dominance-analysis,項目名稱:dominance-analysis,代碼行數:46,代碼來源:dominance.py


注:本文中的bokeh.models.LabelSet方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。