本文整理匯總了Python中bokeh.models.BoxSelectTool方法的典型用法代碼示例。如果您正苦於以下問題:Python models.BoxSelectTool方法的具體用法?Python models.BoxSelectTool怎麽用?Python models.BoxSelectTool使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類bokeh.models
的用法示例。
在下文中一共展示了models.BoxSelectTool方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_figure
# 需要導入模塊: from bokeh import models [as 別名]
# 或者: from bokeh.models import BoxSelectTool [as 別名]
def create_figure():
# args = curdoc().session_context.request.arguments
# with open('args.txt', 'w') as the_file:
# the_file.write(str(curdoc().session_context.request.arguments['batchid']))
# the_file.write(str(args))
df = select_units()
xs = df[x.value].values
ys = df[y.value].values
df['x'] = xs
df['y'] = ys
source.data = df.to_dict(orient='list')
x_title = x.value.title()
y_title = y.value.title()
kw = dict()
if x.value in discrete:
kw['x_range'] = sorted(set(xs))
if y.value in discrete:
kw['y_range'] = sorted(set(ys))
# kw['title'] = "%s" % (dir(args))
kw['title'] = "%s vs %s (%i elements)" % (x_title, y_title, len(df))
# hover = HoverTool(tooltips=[("Address", "@HostnameIP"), ("Malware", "@Malware"), ("Compromise", "@Compromise")])
p = figure(plot_width=500, plot_height=500, tools=[BoxSelectTool(), ResetTool()], **kw)
p.xaxis.axis_label = x_title
p.yaxis.axis_label = y_title
if x.value in discrete:
p.xaxis.major_label_orientation = pd.np.pi / 4
# c = np.where(pandata["Compromise"] > 0, "orange", "grey")
# sz = np.where(pandata["Compromise"] > 0, 9 * , "grey")
p.circle(x='x', y='y', source=source, size=15,
selection_color="orange", alpha=0.8, nonselection_alpha=0.4, selection_alpha=0.6)
return p
示例2: _add_select_tools
# 需要導入模塊: from bokeh import models [as 別名]
# 或者: from bokeh.models import BoxSelectTool [as 別名]
def _add_select_tools(current_src, other_src, param_plot, point_glyph):
select_js_kwargs = {"current_src": current_src, "other_src": other_src}
select_js_code = """
// adapted from https://stackoverflow.com/a/44996422
var chosen = current_src.selected.indices;
if (typeof(chosen) == "number"){
var chosen = [chosen]
};
var chosen_models = [];
for (var i = 0; i < chosen.length; ++ i){
chosen_models.push(current_src.data['model'][chosen[i]])
};
var chosen_models_indices = [];
for (var i = 0; i < current_src.data['index'].length; ++ i){
if (chosen_models.includes(current_src.data['model'][i])){
chosen_models_indices.push(i)
};
};
current_src.selected.indices = chosen_models_indices;
current_src.change.emit();
for (var i = 0; i < other_src.length; ++i){
var chosen_models_indices = [];
for (var j = 0; j < other_src[i].data['index'].length; ++ j){
if (chosen_models.includes(other_src[i].data['model'][j])){
chosen_models_indices.push(j)
};
};
other_src[i].selected.indices = chosen_models_indices;
other_src[i].change.emit();
};
"""
select_callback = CustomJS(args=select_js_kwargs, code=select_js_code)
# point_glyph as only renderer assures that when a point is chosen
# only that point's model is chosen
# this makes it impossible to choose models based on clicking confidence bands
tap = TapTool(renderers=[point_glyph], callback=select_callback)
param_plot.tools.append(tap)
boxselect = BoxSelectTool(renderers=[point_glyph], callback=select_callback)
param_plot.tools.append(boxselect)
示例3: visualize_self_attention_scores
# 需要導入模塊: from bokeh import models [as 別名]
# 或者: from bokeh.models import BoxSelectTool [as 別名]
def visualize_self_attention_scores(tokens, scores, filename="/notebooks/embedding/self-attention.png",
use_notebook=False):
mean_prob = np.mean(scores)
weighted_edges = []
for idx_1, token_prob_dist_1 in enumerate(scores):
for idx_2, el in enumerate(token_prob_dist_1):
if idx_1 == idx_2 or el < mean_prob:
weighted_edges.append((tokens[idx_1], tokens[idx_2], 0))
else:
weighted_edges.append((tokens[idx_1], tokens[idx_2], el))
max_prob = np.max([el[2] for el in weighted_edges])
weighted_edges = [(el[0], el[1], (el[2] - mean_prob) / (max_prob - mean_prob)) for el in weighted_edges]
G = nx.Graph()
G.add_nodes_from([el for el in tokens])
G.add_weighted_edges_from(weighted_edges)
plot = Plot(plot_width=500, plot_height=500,
x_range=Range1d(-1.1, 1.1), y_range=Range1d(-1.1, 1.1))
plot.add_tools(HoverTool(tooltips=None), TapTool(), BoxSelectTool())
graph_renderer = from_networkx(G, nx.circular_layout, scale=1, center=(0, 0))
graph_renderer.node_renderer.data_source.data['colors'] = Spectral8[:len(tokens)]
graph_renderer.node_renderer.glyph = Circle(size=15, line_color=None, fill_color="colors")
graph_renderer.node_renderer.selection_glyph = Circle(size=15, fill_color="colors")
graph_renderer.node_renderer.hover_glyph = Circle(size=15, fill_color="grey")
graph_renderer.edge_renderer.data_source.data["line_width"] = [G.get_edge_data(a, b)['weight'] * 3 for a, b in
G.edges()]
graph_renderer.edge_renderer.glyph = MultiLine(line_color="#CCCCCC", line_width={'field': 'line_width'})
graph_renderer.edge_renderer.selection_glyph = MultiLine(line_color="grey", line_width=5)
graph_renderer.edge_renderer.hover_glyph = MultiLine(line_color="grey", line_width=5)
graph_renderer.selection_policy = NodesAndLinkedEdges()
graph_renderer.inspection_policy = EdgesAndLinkedNodes()
plot.renderers.append(graph_renderer)
x, y = zip(*graph_renderer.layout_provider.graph_layout.values())
data = {'x': list(x), 'y': list(y), 'connectionNames': tokens}
source = ColumnDataSource(data)
labels = LabelSet(x='x', y='y', text='connectionNames', source=source, text_align='center')
plot.renderers.append(labels)
plot.add_tools(SaveTool())
if use_notebook:
output_notebook()
show(plot)
else:
export_png(plot, filename)
print("save @ " + filename)
示例4: create_plot
# 需要導入模塊: from bokeh import models [as 別名]
# 或者: from bokeh.models import BoxSelectTool [as 別名]
def create_plot(self, updateCoordinates):
load_x = []
load_y = []
load_lines_xs = []
load_lines_ys = []
if updateCoordinates:
edges = [list(x) for x in self.nxGraph.edges()]
self.plotdata = {
'Xs': [],
'Ys': [],
}
for edge in edges:
node1, node2 = edge
if 'x' in self.nxGraph.node[node1] and 'x' in self.nxGraph.node[node2]:
x1 = self.nxGraph.node[node1]['x']
y1 = self.nxGraph.node[node1]['y']
x2 = self.nxGraph.node[node2]['x']
y2 = self.nxGraph.node[node2]['y']
if None not in [x1, x2, y1, y2]:
self.plotdata['Xs'].append([x1, x2])
self.plotdata['Ys'].append([y1, y2])
for node in [node1, node2]:
if 'loads' in self.nxGraph.node[node]:
for load_name, load_properties in self.nxGraph.node[node]['loads'].items():
if 'x' in self.nxGraph.node[node] and self.nxGraph.node[node]:
x1 = self.nxGraph.node[node]['x']
y1 = self.nxGraph.node[node]['y']
x2 = load_properties['x']
y2 = load_properties['y']
dist = np.sqrt((x1 - x2)**2 + (y1 - y2)**2)
if 0 not in [x1, x2, y1, y2] and dist < 500:
load_x.append(x2)
load_y.append(y2)
load_lines_xs.append([x1, x2])
load_lines_ys.append([y1, y2])
Linesource = ColumnDataSource(self.plotdata)
plot = figure(title=None, plot_width=900, plot_height=900,
tools=[ResetTool(), BoxSelectTool(), SaveTool(), BoxZoomTool(), WheelZoomTool(),
PanTool()])
# plot edges (lines, fuses, switches, transformers, regulators)
plot.multi_line(xs="Xs", ys="Ys", source=Linesource, line_width=2, legend='Edges', line_color='#00008B') # , line_color=ColorBy
# plot loads
plot.triangle(x=load_x, y=load_y, legend='Loads', color='orange')
# plot substation
Xs, Ys = self.get_class_type_locations('substation')
plot.circle_x(x=Xs, y=Ys, size=14, legend='Substation', fill_color='red', line_color='black')
Xs, Ys = self.get_class_type_locations('regulator')
plot.hex(x=Xs, y=Ys, size=14, legend='Regulators', fill_color='lightgreen', line_color='black')
plot.multi_line(xs=load_lines_xs, ys=load_lines_ys, line_width=2, legend='Drop lines', line_color='black')
plot.legend.location = "top_left"
plot.legend.click_policy = "hide"
curdoc().add_root(plot)
show(plot)
return