本文整理匯總了Python中bokeh.layouts.row方法的典型用法代碼示例。如果您正苦於以下問題:Python layouts.row方法的具體用法?Python layouts.row怎麽用?Python layouts.row使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類bokeh.layouts
的用法示例。
在下文中一共展示了layouts.row方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: app
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import row [as 別名]
def app(doc):
x,y = SineWave()
source = ColumnDataSource(data=dict(x=x, y=y))
import numpy as np # see TODO below about ranges
plot = figure(plot_height=400, plot_width=400,
tools="crosshair,pan,reset,save,wheel_zoom",
x_range=[0, 4*np.pi], y_range=[-2.5, 2.5])
plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6)
def update_sinewave(sw,**kw):
x,y = sw()
source.data = dict(x=x, y=y)
# TODO couldn't figure out how to update ranges
#plot.x_range.start,plot.x_range.end=pobj.x_range
#plot.y_range.start,plot.y_range.end=pobj.y_range
parambokeh.Widgets(SineWave, mode='server', doc=doc, callback=update_sinewave)
doc.add_root(row(plot, width=800))
示例2: process_samples
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import row [as 別名]
def process_samples(samples, rtlsdr_obj):
startTime = time.time()
samples = prefilter.filter(samples) # 0.01s
PSD = 10.0 * np.log10(np.abs(np.fft.fftshift(np.fft.fft(samples, fft_size)/float(fft_size)))**2) # calcs PSD
waterfall = shared_buffer['waterfall'] # pull waterfall from buffer
waterfall[:] = np.roll(waterfall, -1, axis=0) # shifts waterfall 1 row
waterfall[-1,:] = PSD # fill last row with new fft results
shared_buffer['waterfall'] = waterfall # you have to copy it back into the manager_list
shared_buffer['psd'] = PSD # overwrites whatever was in psd buffer, so that the GUI uses the most recent one when it goes to refresh itself
shared_buffer['i'] = np.real(samples[0:samples_in_time_plots]) # i buffer
shared_buffer['q'] = np.imag(samples[0:samples_in_time_plots]) # q buffer
# if the change-gain or change-freq callback function signaled STOP then we need to cancel the async read
if shared_buffer['stop-signal'] == True:
sdr.cancel_read_async() # needs to be called from this function, so we use the shared memory to send a signal
shared_buffer['utilization'] = (time.time() - startTime)/float(samples_per_batch)*sdr.sample_rate # should be below 1.0 to avoid overflows
# Function that runs asynchronous reading from the RTL, and is a blocking function
示例3: process_samples
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import row [as 別名]
def process_samples(samples):
startTime = time.time()
if accumulator.accumulate_samples(samples): # add samples to accumulator (returns True when we have enough)
samples = accumulator.samples # messy way of doing it but it works
#samples = prefilter.filter(samples) # uncomment this to add a filter
PSD = 10.0 * np.log10(np.abs(np.fft.fftshift(np.fft.fft(samples, fft_size)/float(fft_size)))**2) # calcs PSD, crops input to size of fft
# add row to waterfall
waterfall = waterfall_plot._input_buffer['waterfall'][0] # pull waterfall from buffer
waterfall[:] = np.roll(waterfall, -1, axis=0) # shifts waterfall 1 row
waterfall[-1,:] = PSD # fill last row with new fft results
# stick everything we want to display into the shared buffer
waterfall_plot._input_buffer['waterfall'] = [waterfall] # remember to copy it back into the buffer
fft_plot._input_buffer['y'] = PSD # overwrites whatever was in psd buffer, so that the GUI uses the most recent one when it goes to refresh itself
time_plot._input_buffer['i'] = np.real(samples[0:samples_in_time_plots]) # i buffer
time_plot._input_buffer['q'] = np.imag(samples[0:samples_in_time_plots]) # q buffer
iq_plot._input_buffer['i'] = np.real(samples[0:samples_in_time_plots])
iq_plot._input_buffer['q'] = np.imag(samples[0:samples_in_time_plots])
utilization_plot._input_buffer['y'] = [(time.time() - startTime)/float(len(samples))*samp_rate] # should be below 1.0 to avoid overflows
###############
# USRP Config #
###############
示例4: process_samples
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import row [as 別名]
def process_samples(samples, rtlsdr_obj):
startTime = time.time()
PSD = 10.0 * np.log10(np.abs(np.fft.fftshift(np.fft.fft(samples, fft_size)/float(fft_size)))**2) # calcs PSD
waterfall = shared_buffer['waterfall'] # pull waterfall from buffer
waterfall[:] = np.roll(waterfall, -1, axis=0) # shifts waterfall 1 row
waterfall[-1,:] = PSD # fill last row with new fft results
shared_buffer['waterfall'] = waterfall # you have to copy it back into the manager_list
shared_buffer['psd'] = PSD # overwrites whatever was in psd buffer, so that the GUI uses the most recent one when it goes to refresh itself
shared_buffer['i'] = np.real(samples[0:samples_in_time_plots]) # i buffer
shared_buffer['q'] = np.imag(samples[0:samples_in_time_plots]) # q buffer
# if the change-gain or change-freq callback function signaled STOP then we need to cancel the async read
if shared_buffer['stop-signal'] == True:
sdr.cancel_read_async() # needs to be called from this function, so we use the shared memory to send a signal
shared_buffer['utilization'] = (time.time() - startTime)/float(samples_per_batch)*sdr.sample_rate # should be below 1.0 to avoid overflows
# Function that runs asynchronous reading from the RTL, and is a blocking function
示例5: process_samples
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import row [as 別名]
def process_samples(samples, rtlsdr_obj):
startTime = time.time()
samples = prefilter.filter(samples)
PSD = 10.0 * np.log10(np.abs(np.fft.fftshift(np.fft.fft(samples, fft_size)/float(fft_size)))**2) # calcs PSD
waterfall = shared_buffer['waterfall'] # pull waterfall from buffer
waterfall[:] = np.roll(waterfall, -1, axis=0) # shifts waterfall 1 row
waterfall[-1,:] = PSD # fill last row with new fft results
shared_buffer['waterfall'] = waterfall # you have to copy it back into the manager_list
shared_buffer['psd'] = PSD # overwrites whatever was in psd buffer, so that the GUI uses the most recent one when it goes to refresh itself
shared_buffer['i'] = np.real(samples[0:samples_in_time_plots]) # i buffer
shared_buffer['q'] = np.imag(samples[0:samples_in_time_plots]) # q buffer
# if the change-gain or change-freq callback function signaled STOP then we need to cancel the async read
if shared_buffer['stop-signal'] == True:
sdr.cancel_read_async() # needs to be called from this function, so we use the shared memory to send a signal
shared_buffer['utilization'] = (time.time() - startTime)/float(samples_per_batch)*sdr.sample_rate # should be below 1.0 to avoid overflows
# Function that runs asynchronous reading from the RTL, and is a blocking function
示例6: process_samples
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import row [as 別名]
def process_samples():
# Set up connection to gnuradio or whatever is providing zmq stream of np.complex64 in array form
context = zmq.Context()
socket = context.socket(zmq.SUB)
print "Connecting to server"
socket.connect ("tcp://localhost:%s" % port)
topicfilter = "" # no idea why, but if i dont provide an empty topic filter then it just does not work, even the simple pyzmq example doesn't work
socket.setsockopt(zmq.SUBSCRIBE, topicfilter)
while True: # Run forever
samples = np.frombuffer(socket.recv(), dtype=np.complex64) # blocking until there's a msg sent by the server
startTime = time.time()
PSD = 10.0 * np.log10(np.abs(np.fft.fftshift(np.fft.fft(samples, fft_size)/float(fft_size)))**2) # calcs PSD
waterfall = shared_buffer['waterfall'] # pull waterfall from buffer
waterfall[:] = np.roll(waterfall, -1, axis=0) # shifts waterfall 1 row
waterfall[-1,:] = PSD # fill last row with new fft results
shared_buffer['waterfall'] = waterfall # you have to copy it back into the manager_list
shared_buffer['psd'] = PSD # overwrites whatever was in psd buffer, so that the GUI uses the most recent one when it goes to refresh itself
shared_buffer['i'] = np.real(samples[0:samples_in_time_plots]) # i buffer
shared_buffer['q'] = np.imag(samples[0:samples_in_time_plots]) # q buffer
shared_buffer['utilization'] = (time.time() - startTime)/float(len(samples))*sample_rate # should be below 1.0 to avoid overflows
# Start SDR sample recieving/processing as a separate thread
示例7: modify_document
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import row [as 別名]
def modify_document(self, doc):
controller = self.network.notes[0]
notes_df = pd.DataFrame(self.network.notes[1]).reset_index()
notes_df.columns = ["index", "notes"]
notes = ColumnDataSource(notes_df)
self.columns = [
TableColumn(field="index", title="Timestamp"),
TableColumn(field="notes", title="Notes"),
]
self.data_table = DataTable(source=notes, columns=self.columns)
layout = row([self.data_table])
doc.add_root(layout)
doc.title = "Notes for {}".format(controller)
# doc.add_periodic_callback(self.update_data,100)
return doc
示例8: __init__
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import row [as 別名]
def __init__(self, doc: Document, push_fnc, bokeh_fac: callable, push_data_fnc:callable, strategy: bt.Strategy, figurepage_idx: int = 0, lookback: int = 20):
self._slider_aspectratio = None
self._push_data_fnc = push_data_fnc
self._push_fnc = push_fnc
self._figurepage_idx = figurepage_idx
self.last_data_index = -1
self._lookback = lookback
self._strategy = strategy
self._current_group = None
self.document = doc
self._bokeh_fac = bokeh_fac
self._bokeh = None
bokeh = self._bokeh_fac() # temporary bokeh object to get tradingdomains and scheme
self._scheme = copy(bokeh.p.scheme) # preserve original scheme as originally provided by the user
tradingdomains = bokeh.list_tradingdomains(strategy)
self._current_group = tradingdomains[0]
self._select_tradingdomain = Select(value=self._current_group, options=tradingdomains)
self._select_tradingdomain.on_change('value', self._on_select_group)
btn_refresh_analyzers = Button(label='Refresh Analyzers', width=100)
btn_refresh_analyzers.on_click(self._on_click_refresh_analyzers)
td_label = Div(text="Trading Domain:", margin=(9, 5, 15, 5))
controls = row(children=[td_label, self._select_tradingdomain, btn_refresh_analyzers])
self.model = column(children=[controls, Tabs(tabs=[])], sizing_mode=self._scheme.plot_sizing_mode)
# append meta tab
meta = Div(text=metadata.get_metadata_div(strategy))
self._panel_metadata = Panel(child=meta, title="Meta")
self._refreshmodel()
示例9: _get_config_panel
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import row [as 別名]
def _get_config_panel(self):
def on_change_checkbox(vals):
for i, f in enumerate(self._bokeh.figurepages[0].figure_envs):
if i > 1:
continue
f.figure.visible = i in vals
self._slider_aspectratio = Slider(value=self._scheme.plotaspectratio, start=0.1, end=10.0, step=0.1)
button = Button(label="Save", button_type="success")
button.on_click(self.on_button_save_config)
r1 = row(children=[Div(text='Aspect Ratio', margin=(15, 10, 0, 10)), self._slider_aspectratio])
return Panel(child=column(children=[r1, button]), title='Config')
示例10: show_layout
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import row [as 別名]
def show_layout(ax, show=True, force_layout=False):
"""Create a layout and call bokeh show."""
if show is None:
show = rcParams["plot.bokeh.show"]
if show:
import bokeh.plotting as bkp
layout = create_layout(ax, force_layout=force_layout)
bkp.show(layout)
示例11: htile
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import row [as 別名]
def htile(maps, n):
return column([row(maps[i:i + n]) for i in range(0, len(maps), n)])
示例12: vtile
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import row [as 別名]
def vtile(maps, n):
return row([column(maps[i::n]) for i in range(n)])
示例13: _create_header
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import row [as 別名]
def _create_header(train_dropdown, inference_dropdown, text_status) -> layouts.Row:
"""Utility function for creating and styling the header row in the UI layout."""
architect_logo = Div(
text='<a href="http://nlp_architect.nervanasys.com"> <img border="0" '
'src="style/nlp_architect.jpg" width="200"></a> by Intel® AI Lab',
style={
"margin-left": "500px",
"margin-top": "20px",
"font-size": "110%",
"text-align": "center",
},
)
css_link = Div(
text="<link rel='stylesheet' type='text/css' href='style/lexicon_manager.css'>",
style={"font-size": "0%"},
)
js_script = Div(text="<input type='file' id='inputOS' hidden='true'>")
title = Div(
text="ABSApp",
style={
"font-size": "300%",
"color": "royalblue",
"font-weight": "bold",
"margin-left": "500px",
},
)
return row(
column(
row(children=[train_dropdown, lexicons_dropdown, inference_dropdown], width=500),
row(text_status),
),
css_link,
js_script,
widgetbox(title, width=900, height=84),
widgetbox(architect_logo, width=400, height=84),
)
示例14: update_effect
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import row [as 別名]
def update_effect(attrname, old, new):
global effect, model, knob_names, knob_ranges, num_knobs, knob_sliders
# match the menu option with the right entry in effects_dict
long_name = effect_select.value
plot.title.text = f"Trying to setup effect '{long_name}'..."
shortname = ''
for key, val in effects_dict.items():
if val['name'] == long_name:
shortname = key
break
if '' == shortname:
plot.title.text = f"**ERROR: Effect '{long_name}' not defined**"
return
effect = effects_dict[shortname]['effect']
num_knobs = 0
if effect is not None:
knob_names, knob_ranges = effect.knob_names, np.array(effect.knob_ranges)
num_knobs = len(knob_names)
# try to read the checkpoint file
checkpoint_file = effects_dict[shortname]['checkpoint']
model = setup_model(checkpoint_file, fatal=False)
if model is None:
msg = f"**ERROR: checkpoint file '{checkpoint_file}' not found**"
print("\n",msg)
plot.title.text = msg
# rebuild the entire display (because knobs have changed)
knob_sliders = []
if num_knobs > 0:
knobs_wc = knob_ranges.mean(axis=1)
for k in range(num_knobs):
start, end = knob_ranges[k][0], knob_ranges[k][1]
mid = knobs_wc[k]
step = (end-start)/25
tmp = Slider(title=knob_names[k], value=mid, start=start, end=end, step=step)
knob_sliders.append(tmp)
for w in knob_sliders: # since we now defined new widgets, we need triggers for them
w.on_change('value', update_data)
inputs = column([effect_select, input_select]+knob_sliders )
curdoc().clear()
curdoc().add_root(row(inputs, plot, width=800))
curdoc().title = "SignalTrain Demo"
update_data(attrname, old, new)
示例15: update
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import row [as 別名]
def update(self):
try:
new_df, new_df_dict = self.safe_get_dataframe(self.source)
# source changed, but original source doesn't
row_changed = len(self.source.data['path']) != len(self.original_source.data['path'])
if row_changed:
self.logger.debug("source has %s rows, tmp source has %s rows", len(self.source.data['path']), len(self.original_source.data['path']))
old_df, _ = self.safe_get_dataframe(self.original_source, new_df_dict['myindex'])
else:
old_df, _ = self.safe_get_dataframe(self.original_source)
new_df = new_df.sort_values(by=['myindex'], ascending=[True])
new_df = new_df.reset_index(drop=True)
old_df = old_df.sort_values(by=['myindex'], ascending=[True])
old_df = old_df.reset_index(drop=True)
assert_frame_equal(old_df, new_df)
self.logger.debug("nothing changed!")
except AssertionError:
# build a mapping between id and myindex.
id2myindex = {index: row['myindex'] for index, row in old_df.iterrows()}
# reference link
# http://stackoverflow.com/questions/17095101/outputting-difference-in-two-pandas-dataframes-side-by-side-highlighting-the-d
ne_stacked = (old_df != new_df).stack()
changed = ne_stacked[ne_stacked]
changed.index.names = ['id', 'col']
different_locations = np.where(old_df != new_df)
changed_from = old_df.values[different_locations]
changed_to = new_df.values[different_locations]
changed_df = pd.DataFrame({'from': changed_from, 'to': changed_to}, index=changed.index)
self.logger.debug("update data: %s", changed_df)
# generate patch dict and redis name, key, value update queries
patch_dict = {}
for index, row in changed_df.iterrows():
row_id, column_id = index
patch_dict.setdefault(column_id, [])
myindex = id2myindex[row_id]
path = old_df['path'].iloc[row_id]
patch_dict[column_id].append((myindex, row['to']))
# self.logger.info("updating name %s, key %s, value %s (old value %s)", path, column_id, row['to'], row['from'])
self.update_redis_data(path, column_id, row['to'])
self.update_display_data(patch_dict)
self.logger.info("patch dict is: %s", patch_dict)
except Exception as e:
self.logger.error("Unexpected error: %s", str(e))
###########################################################
# Create UI
###########################################################