本文整理匯總了Python中bokeh.layouts.gridplot方法的典型用法代碼示例。如果您正苦於以下問題:Python layouts.gridplot方法的具體用法?Python layouts.gridplot怎麽用?Python layouts.gridplot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類bokeh.layouts
的用法示例。
在下文中一共展示了layouts.gridplot方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import gridplot [as 別名]
def plot(self, ncols=2):
"""
:param ncols: Number of grid columns
:return: a bokeh figure image
"""
grid = gridplot(self.plots, ncols=ncols)
return grid
示例2: add_plot
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import gridplot [as 別名]
def add_plot(stockStat, conf):
p_list = []
logging.info("############################", type(conf["dic"]))
# 循環 多個line 信息。
for key, val in enumerate(conf["dic"]):
logging.info(key)
logging.info(val)
p1 = figure(width=1000, height=150, x_axis_type="datetime")
# add renderers
stockStat["date"] = pd.to_datetime(stockStat.index.values)
# ["volume","volume_delta"]
# 設置20個顏色循環,顯示0 2 4 6 號序列。
p1.line(stockStat["date"], stockStat[val], color=Category20[20][key * 2])
# Set date format for x axis 格式化。
p1.xaxis.formatter = DatetimeTickFormatter(
hours=["%Y-%m-%d"], days=["%Y-%m-%d"],
months=["%Y-%m-%d"], years=["%Y-%m-%d"])
# p1.xaxis.major_label_orientation = radians(30) #可以旋轉一個角度。
p_list.append([p1])
gp = gridplot(p_list)
script, div = components(gp)
return {
"script": script,
"div": div,
"title": conf["title"],
"desc": conf["desc"]
}
示例3: _get_nodata_panel
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import gridplot [as 別名]
def _get_nodata_panel(self):
chart_grid = gridplot([], toolbar_location=self.p.scheme.toolbar_location, toolbar_options={'logo': None})
return Panel(child=chart_grid, title="No Data")
示例4: get_analyzer_panel
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import gridplot [as 別名]
def get_analyzer_panel(self, analyzers: List[bt.Analyzer]) -> Optional[Panel]:
if len(analyzers) == 0:
return None
table_width = int(self.p.scheme.analyzer_tab_width / self.p.scheme.analyzer_tab_num_cols)
acolumns = []
for analyzer in analyzers:
table_header, elements = self._tablegen.get_analyzers_tables(analyzer, table_width)
acolumns.append(column([table_header] + elements))
childs = gridplot(acolumns, ncols=self.p.scheme.analyzer_tab_num_cols, toolbar_options={'logo': None})
return Panel(child=childs, title='Analyzers')
示例5: show_layout
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import gridplot [as 別名]
def show_layout(ax, show=True, force_layout=False):
"""Create a layout and call bokeh show."""
if show is None:
show = rcParams["plot.bokeh.show"]
if show:
import bokeh.plotting as bkp
layout = create_layout(ax, force_layout=force_layout)
bkp.show(layout)
示例6: exec_file
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import gridplot [as 別名]
def exec_file(self):
print("running {0}".format(self.filename))
thumbfile = op.join("example_thumbs", self.thumbfilename)
cx, cy = self.thumbloc
pngfile = op.join(self.target_dir, self.pngfilename)
plt.close("all")
if self.backend == "matplotlib":
my_globals = {"pl": plt, "plt": plt}
with open(self.filename, "r") as fp:
code_text = fp.read()
code_text = re.sub(r"(plt\.show\S+)", "", code_text)
exec(compile(code_text, self.filename, "exec"), my_globals)
fig = plt.gcf()
fig.canvas.draw()
fig.savefig(pngfile, dpi=75)
elif self.backend == "bokeh":
pngfile = thumbfile
with open(self.filename, "r") as fp:
code_text = fp.read()
code_text += BOKEH_EXPORT_CODE.format(pngfilename=thumbfile)
with rc_context(rc={"plot.bokeh.show": False}):
exec(
code_text,
{"export_png": export_png, "ndarray": ndarray, "gridplot": gridplot},
)
create_thumbnail(pngfile, thumbfile, cx=cx, cy=cy)
示例7: modify_document
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import gridplot [as 別名]
def modify_document(self, doc):
doc.clear()
self.build_plot()
layout = gridplot(self.plots, ncols=2)
doc.add_root(layout)
self._pcb = doc.add_periodic_callback(self.update_data, 10000)
return doc
示例8: initialize_plot
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import gridplot [as 別名]
def initialize_plot(self, ranges=None, plots=[]):
ranges = self.compute_ranges(self.layout, self.keys[-1], None)
passed_plots = list(plots)
plots = [[None for c in range(self.cols)] for r in range(self.rows)]
for i, coord in enumerate(self.layout.keys(full_grid=True)):
r = i % self.rows
c = i // self.rows
subplot = self.subplots.get(wrap_tuple(coord), None)
if subplot is not None:
plot = subplot.initialize_plot(ranges=ranges, plots=passed_plots)
plots[r][c] = plot
passed_plots.append(plot)
else:
passed_plots.append(None)
plot = gridplot(plots[::-1], merge_tools=self.merge_tools,
sizing_mode=self.sizing_mode,
toolbar_location=self.toolbar)
plot = self._make_axes(plot)
title = self._get_title_div(self.keys[-1])
if title:
plot = Column(title, plot)
self.handles['title'] = title
self.handles['plot'] = plot
self.handles['plots'] = plots
self._update_callbacks(plot)
if self.shared_datasource:
self.sync_sources()
if self.top_level:
self.init_links()
self.drawn = True
return self.handles['plot']
示例9: _make_axes
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import gridplot [as 別名]
def _make_axes(self, plot):
width, height = self.renderer.get_size(plot)
x_axis, y_axis = None, None
keys = self.layout.keys(full_grid=True)
if self.xaxis:
flip = self.shared_xaxis
rotation = self.xrotation
lsize = self._fontsize('xlabel').get('fontsize')
tsize = self._fontsize('xticks', common=False).get('fontsize')
xfactors = list(unique_iterator([wrap_tuple(k)[0] for k in keys]))
x_axis = make_axis('x', width, xfactors, self.layout.kdims[0],
flip=flip, rotation=rotation, label_size=lsize,
tick_size=tsize)
if self.yaxis and self.layout.ndims > 1:
flip = self.shared_yaxis
rotation = self.yrotation
lsize = self._fontsize('ylabel').get('fontsize')
tsize = self._fontsize('yticks', common=False).get('fontsize')
yfactors = list(unique_iterator([k[1] for k in keys]))
y_axis = make_axis('y', height, yfactors, self.layout.kdims[1],
flip=flip, rotation=rotation, label_size=lsize,
tick_size=tsize)
if x_axis and y_axis:
plot = filter_toolboxes(plot)
r1, r2 = ([y_axis, plot], [None, x_axis])
if self.shared_xaxis:
r1, r2 = r2, r1
if self.shared_yaxis:
x_axis.margin = (0, 0, 0, 50)
r1, r2 = r1[::-1], r2[::-1]
plot = gridplot([r1, r2])
elif y_axis:
models = [y_axis, plot]
if self.shared_yaxis: models = models[::-1]
plot = Row(*models)
elif x_axis:
models = [plot, x_axis]
if self.shared_xaxis: models = models[::-1]
plot = Column(*models)
return plot
示例10: health
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import gridplot [as 別名]
def health():
'''
# Health
'''
'''
$contents
'''
'''
## Load Data
Open a connection to the database and load the data we require.
'''
s = session('-v2')
health = std_health_statistics(s)
'''
## Health and Fitness
'''
output_file(filename='/dev/null')
fitness, fatigue = like(N.FITNESS_ANY, health.columns), like(N.FATIGUE_ANY, health.columns)
colours = ['black'] * len(fitness) + ['red'] * len(fatigue)
alphas = [1.0] * len(fitness) + [0.5] * len(fatigue)
ff = multi_line_plot(900, 300, N.TIME, fitness + fatigue, health, colours, alphas=alphas)
xrange = ff.x_range if ff else None
add_multi_line_at_index(ff, N.TIME, fitness + fatigue, health, colours, alphas=alphas, index=-1)
atd = std_distance_time_plot(900, 200, health, x_range=xrange)
shr = multi_plot(900, 200, N.TIME, [N.DAILY_STEPS, N.REST_HR_BPM], health, ['grey', 'red'], alphas=[1, 0.5],
x_range=xrange, rescale=True, plotters=[bar_plotter(dt.timedelta(hours=20)), dot_plotter()])
add_curve(shr, N.TIME, N.REST_HR_BPM, health, color='red', y_range_name=N.REST_HR_BPM)
show(gridplot([[ff], [atd], [shr]]))
示例11: plot_cross_variograms
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import gridplot [as 別名]
def plot_cross_variograms(trace, lags, df, n_exp=2, n_gaus=2, iter_plot=200, experimental=None):
n_equations = trace['weights'].shape[1]
n_iter = trace['weights'].shape[0]
lags_tiled = np.tile(lags, (iter_plot, 1))
b_var = []
for i in range(0, df.shape[1]): # n_equations, (n_exp+n_gaus)):
# Init tensor
b = np.zeros((len(lags), n_iter, 0))
for i_exp in range(0, n_exp):
# print(i_exp, "exp")
b = np.dstack((b, trace['weights'][:, i_exp + i * (n_exp + n_gaus)] *
exp_vario(lags, trace['sill'][:, i_exp], trace['range'][:, i_exp])))
for i_gaus in range(n_exp, n_gaus + n_exp):
# print(i_gaus)
b = np.dstack((b, trace['weights'][:, i_gaus + i * (n_exp + n_gaus)] *
gaus_vario(lags, trace['sill'][:, i_gaus], trace['range'][:, i_gaus])))
# Sum the contributins of each function
b_all = b.sum(axis=2)
# Append each variable
b_var.append(b_all[:, -iter_plot:].T)
p_all = []
for e, el in enumerate(df.columns):
p = bp.figure(x_axis_type="log")
p.multi_line(list(lags_tiled), list(b_var[e]), color='olive', alpha=0.08)
if experimental is not None:
p.scatter(experimental['lags'], y=experimental[el], color='navy', size=2)
p.title.text = el
p.xaxis.axis_label = "lags"
p.yaxis.axis_label = "Semivariance"
p_all = np.append(p_all, p)
grid = bl.gridplot(list(p_all), ncols=5, plot_width=200, plot_height=150)
show(grid)
示例12: plot_cross_covariance
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import gridplot [as 別名]
def plot_cross_covariance(trace, lags, df, n_exp=2, n_gaus=2, nuggets=None, iter_plot=200):
n_equations = trace['weights'].shape[1]
n_iter = trace['weights'].shape[0]
lags_tiled = np.tile(lags, (iter_plot, 1))
b_var = []
for i in range(0, df.shape[1]): # n_equations, (n_exp+n_gaus)):
# Init tensor
b = np.zeros((len(lags), n_iter, 0))
for i_exp in range(0, n_exp):
# print(i_exp, "exp")
b = np.dstack((b, trace['weights'][:, i_exp + i * (n_exp + n_gaus)] *
exp_vario(lags, trace['sill'][:, i_exp], trace['range'][:, i_exp])))
for i_gaus in range(n_exp, n_gaus + n_exp):
# print(i_gaus)
b = np.dstack((b, trace['weights'][:, i_gaus + i * (n_exp + n_gaus)] *
gaus_vario(lags, trace['sill'][:, i_gaus], trace['range'][:, i_gaus])))
# Sum the contributins of each function
if nuggets is not None:
b_all = 1 - (b.sum(axis=2) + nuggets[i])
else:
b_all = 1 - (b.sum(axis=2))
# Append each variable
b_var.append(b_all[:, -iter_plot:].T)
p_all = []
for e, el in enumerate(df.columns):
p = bp.figure(x_axis_type="log")
p.multi_line(list(lags_tiled), list(b_var[e]), color='olive', alpha=0.08)
p.title.text = el
p.xaxis.axis_label = "lags"
p.yaxis.axis_label = "Semivariance"
p_all = np.append(p_all, p)
grid = bl.gridplot(list(p_all), ncols=5, plot_width=250, plot_height=150)
show(grid)
示例13: comparison_plot
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import gridplot [as 別名]
def comparison_plot(
results,
color_dict=None,
height=None,
width=500,
axis_for_every_parameter=False,
x_padding=0.1,
num_bins=50,
):
"""Make a comparison plot from a dictionary containing optimization results.
Args:
results (list): List of estimagic optimization results where the info
can have been extended with 'model' and 'model_name'
color_dict (dict):
mapping from the model class names to colors.
height (int):
height of the plot.
width (int):
width of the plot (in pixels).
axis_for_every_parameter (bool):
if False the x axis is only shown once for every group of parameters.
x_padding (float): the x_range is extended on each side by x_padding
times the range of the data
num_bins (int): number of bins
Returns:
source_dfs, grid
"""
source_dfs, plot_info = comparison_plot_inputs(
results=results,
x_padding=x_padding,
num_bins=num_bins,
color_dict=color_dict,
fig_height=height,
)
source_dict, figure_dict, glyph_dict = _create_comparison_plot_components(
source_dfs=source_dfs,
plot_info=plot_info,
axis_for_every_parameter=axis_for_every_parameter,
width=width,
)
model_classes = sorted({res.info["model_class"] for res in results})
plots_with_callbacks = _add_callbacks(
source_dict=source_dict,
figure_dict=figure_dict,
glyph_dict=glyph_dict,
model_classes=model_classes,
)
grid = gridplot(plots_with_callbacks, toolbar_location="right", ncols=1)
show(grid)
return source_dfs, grid
示例14: generate_model_tabs
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import gridplot [as 別名]
def generate_model_tabs(self, fp: FigurePage, tradingdomain=None) -> List[Panel]:
observers = [x for x in fp.figure_envs if isinstance(x.master, bt.Observer)]
datas = [x for x in fp.figure_envs if isinstance(x.master, bt.DataBase)]
inds = [x for x in fp.figure_envs if isinstance(x.master, bt.Indicator)]
# now assign figures to tabs
# 1. assign default tabs if no manual tab is assigned
for figure in [x for x in datas if x.plottab is None]:
figure.plottab = 'Plots' if self.is_tabs_single else 'Datas'
for figure in [x for x in inds if x.plottab is None]:
figure.plottab = 'Plots' if self.is_tabs_single else 'Indicators'
for figure in [x for x in observers if x.plottab is None]:
figure.plottab = 'Plots' if self.is_tabs_single else 'Observers'
# 2. group panels by desired tabs
# groupby expects the groups to be sorted or else will produce duplicated groups
sorted_figs = list(itertools.chain(datas, inds, observers))
# 3. filter tradingdomains
if tradingdomain is not None:
filtered = []
for f in sorted_figs:
lgs = f.get_tradingdomains()
for lg in lgs:
if lg is True or lg == tradingdomain:
filtered.append(f)
sorted_figs = filtered
sorted_figs.sort(key=lambda x: x.plottab)
tabgroups = itertools.groupby(sorted_figs, lambda x: x.plottab)
panels = []
def build_panel(objects, panel_title):
if len(objects) == 0:
return
Bokeh._sort_plotobjects(objects)
g = gridplot([[x.figure] for x in objects],
toolbar_options={'logo': None},
toolbar_location=self.p.scheme.toolbar_location,
sizing_mode=self.p.scheme.plot_sizing_mode,
)
panels.append(Panel(title=panel_title, child=g))
for tabname, figures in tabgroups:
build_panel(list(figures), tabname)
return panels
# endregion
示例15: create_layout
# 需要導入模塊: from bokeh import layouts [as 別名]
# 或者: from bokeh.layouts import gridplot [as 別名]
def create_layout(ax, force_layout=False):
"""Transform bokeh array of figures to layout."""
ax = np.atleast_2d(ax)
subplot_order = rcParams["plot.bokeh.layout.order"]
if force_layout:
from bokeh.layouts import gridplot as layout
ax = ax.tolist()
layout_args = {
"sizing_mode": rcParams["plot.bokeh.layout.sizing_mode"],
"toolbar_location": rcParams["plot.bokeh.layout.toolbar_location"],
}
elif any(item in subplot_order for item in ("row", "column")):
# check number of rows
match = re.match(r"(\d*)(row|column)", subplot_order)
n = int(match.group(1)) if match.group(1) is not None else 1
subplot_order = match.group(2)
# set up 1D list of axes
ax = [item for item in ax.ravel().tolist() if item is not None]
layout_args = {"sizing_mode": rcParams["plot.bokeh.layout.sizing_mode"]}
if subplot_order == "row" and n == 1:
from bokeh.layouts import row as layout
elif subplot_order == "column" and n == 1:
from bokeh.layouts import column as layout
else:
from bokeh.layouts import layout
if n != 1:
ax = np.array(ax + [None for _ in range(int(np.ceil(len(ax) / n)) - len(ax))])
if subplot_order == "row":
ax = ax.reshape(n, -1)
else:
ax = ax.reshape(-1, n)
ax = ax.tolist()
else:
if subplot_order in ("square", "square_trimmed"):
ax = [item for item in ax.ravel().tolist() if item is not None]
n = int(np.ceil(len(ax) ** 0.5))
ax = ax + [None for _ in range(n ** 2 - len(ax))]
ax = np.array(ax).reshape(n, n)
ax = ax.tolist()
if (subplot_order == "square_trimmed") and any(
all(item is None for item in row) for row in ax
):
from bokeh.layouts import layout
ax = [row for row in ax if not all(item is None for item in row)]
layout_args = {"sizing_mode": rcParams["plot.bokeh.layout.sizing_mode"]}
else:
from bokeh.layouts import gridplot as layout
layout_args = {
"sizing_mode": rcParams["plot.bokeh.layout.sizing_mode"],
"toolbar_location": rcParams["plot.bokeh.layout.toolbar_location"],
}
# ignore "fixed" sizing_mode without explicit width and height
if layout_args.get("sizing_mode", "") == "fixed":
layout_args.pop("sizing_mode")
return layout(ax, **layout_args)