本文整理匯總了Python中bokeh.io.save方法的典型用法代碼示例。如果您正苦於以下問題:Python io.save方法的具體用法?Python io.save怎麽用?Python io.save使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類bokeh.io
的用法示例。
在下文中一共展示了io.save方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot
# 需要導入模塊: from bokeh import io [as 別名]
# 或者: from bokeh.io import save [as 別名]
def plot(self, x, y, title=None, xlabel=None, ylabel=None,
width=800, height=400, colors=None, line_width=2,
tools='pan,box_zoom,wheel_zoom,box_select,hover,reset,save'):
xlabel = xlabel or x
f = figure(title=title, tools=tools,
width=width, height=height,
x_axis_label=xlabel or x,
y_axis_label=ylabel or '')
if colors is not None:
colors = iter(colors)
else:
colors = cycle(colors_palette)
for yi in y:
f.line(self.results[x], self.results[yi],
line_width=line_width,
line_color=next(colors), legend=yi)
self.figures.append(f)
示例2: test_plot_time_series_with_large_initial_values
# 需要導入模塊: from bokeh import io [as 別名]
# 或者: from bokeh.io import save [as 別名]
def test_plot_time_series_with_large_initial_values():
cds = ColumnDataSource({"y": [2e17, 1e16, 1e5], "x": [1, 2, 3]})
title = "Are large initial values shown?"
fig = monitoring._plot_time_series(data=cds, y_keys=["y"], x_name="x", title=title)
title = "Test _plot_time_series can handle large initial values."
output_file("time_series_initial_value.html", title=title)
path = save(obj=fig)
webbrowser.open_new_tab("file://" + path)
示例3: main
# 需要導入模塊: from bokeh import io [as 別名]
# 或者: from bokeh.io import save [as 別名]
def main():
args = parser.parse_args()
title = 'comparison: ' + ','.join(args.experiments)
x_axis_type = 'linear'
y_axis_type = 'linear'
width = 800
height = 400
line_width = 2
tools = 'pan,box_zoom,wheel_zoom,box_select,hover,reset,save'
results = {}
for i, exp in enumerate(args.experiments):
if args.legend is not None and len(args.legend) > i:
name = args.legend[i]
else:
name = exp
filename = exp + '/results.csv'
results[name] = pd.read_csv(filename, index_col=None)
figures = []
for comp in args.compare:
fig = figure(title=comp, tools=tools,
width=width, height=height,
x_axis_label=args.x_axis,
y_axis_label=comp,
x_axis_type=x_axis_type,
y_axis_type=y_axis_type)
colors = cycle(args.colors)
for i, (name, result) in enumerate(results.items()):
fig.line(result[args.x_axis], result[comp],
line_width=line_width,
line_color=next(colors), legend=name)
fig.legend.click_policy = "hide"
figures.append(fig)
plots = column(*figures)
show(plots)
示例4: save
# 需要導入模塊: from bokeh import io [as 別名]
# 或者: from bokeh.io import save [as 別名]
def save(self, title='Training Results'):
if len(self.figures) > 0:
if os.path.isfile(self.plot_path):
os.remove(self.plot_path)
output_file(self.plot_path, title=title)
plot = column(*self.figures)
save(plot)
self.figures = []
self.results.to_csv(self.path, index=False, index_label=False)
示例5: save_checkpoint
# 需要導入模塊: from bokeh import io [as 別名]
# 或者: from bokeh.io import save [as 別名]
def save_checkpoint(state, is_best, path='.', filename='checkpoint.pth.tar', save_all=False):
filename = os.path.join(path, filename)
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, os.path.join(path, 'model_best.pth.tar'))
if save_all:
shutil.copyfile(filename, os.path.join(
path, 'checkpoint_epoch_%s.pth.tar' % state['epoch']))
示例6: save
# 需要導入模塊: from bokeh import io [as 別名]
# 或者: from bokeh.io import save [as 別名]
def save(plot,fname):
#SaveTool https://github.com/bokeh/bokeh/blob/118b6a765ee79232b1fef0e82ed968a9dbb0e17f/examples/models/line.py
from bokeh.io import save, output_file
output_file(fname)
save(plot)
示例7: save
# 需要導入模塊: from bokeh import io [as 別名]
# 或者: from bokeh.io import save [as 別名]
def save(self, title='Training Results'):
if len(self.figures) > 0:
if os.path.isfile(self.plot_path):
os.remove(self.plot_path)
output_file(self.plot_path, title=title)
plot = column(*self.figures)
save(plot)
self.clear()
self.results.to_csv(self.path, index=False, index_label=False)
示例8: results_add
# 需要導入模塊: from bokeh import io [as 別名]
# 或者: from bokeh.io import save [as 別名]
def results_add(epoch, results, train_loss, psnr):
results.add(epoch=epoch + 1, train_loss=train_loss,
psnr=psnr)
results.plot(x='epoch', y=['train_loss'],
title='Loss', ylabel='loss')
results.plot(x='epoch', y=['psnr'],
title='PSNR', ylabel='psnr')
results.save()
示例9: draw_rec_prec
# 需要導入模塊: from bokeh import io [as 別名]
# 或者: from bokeh.io import save [as 別名]
def draw_rec_prec(rec, prec, mrec, mprec, class_name, ap):
"""
Draw plot
"""
plt.plot(rec, prec, '-o')
# add a new penultimate point to the list (mrec[-2], 0.0)
# since the last line segment (and respective area) do not affect the AP value
area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]]
area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]]
plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r')
# set window title
fig = plt.gcf() # gcf - get current figure
fig.canvas.set_window_title('AP ' + class_name)
# set plot title
plt.title('class: ' + class_name + ' AP = {}%'.format(ap*100))
#plt.suptitle('This is a somewhat long figure title', fontsize=16)
# set axis titles
plt.xlabel('Recall')
plt.ylabel('Precision')
# optional - set axes
axes = plt.gca() # gca - get current axes
axes.set_xlim([0.0,1.0])
axes.set_ylim([0.0,1.05]) # .05 to give some extra space
# Alternative option -> wait for button to be pressed
#while not plt.waitforbuttonpress(): pass # wait for key display
# Alternative option -> normal display
#plt.show()
# save the plot
rec_prec_plot_path = os.path.join('result','classes')
os.makedirs(rec_prec_plot_path, exist_ok=True)
fig.savefig(os.path.join(rec_prec_plot_path, class_name + ".png"))
plt.cla() # clear axes for next plot
示例10: generate_rec_prec_html
# 需要導入模塊: from bokeh import io [as 別名]
# 或者: from bokeh.io import save [as 別名]
def generate_rec_prec_html(mrec, mprec, scores, class_name, ap):
"""
generate dynamic P-R curve HTML page for each class
"""
rec_prec_plot_path = os.path.join('result' ,'classes')
os.makedirs(rec_prec_plot_path, exist_ok=True)
bokeh_io.output_file(os.path.join(rec_prec_plot_path, class_name + '.html'), title='P-R curve for ' + class_name)
# prepare curve data
area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]]
area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]]
score_on_curve = [0.0] + scores[:-1] + [0.0] + [scores[-1]] + [1.0]
source = bokeh.models.ColumnDataSource(data={
'rec' : area_under_curve_x,
'prec' : area_under_curve_y,
'score' : score_on_curve,
})
# prepare plot figure
plt_title = 'class: ' + class_name + ' AP = {}%'.format(ap*100)
plt = bokeh_plotting.figure(plot_height=200 ,plot_width=200, tools="", toolbar_location=None,
title=plt_title, sizing_mode="scale_width")
plt.background_fill_color = "#f5f5f5"
plt.grid.grid_line_color = "white"
plt.xaxis.axis_label = 'Recall'
plt.yaxis.axis_label = 'Precision'
plt.axis.axis_line_color = None
# draw curve data
plt.line(x='rec', y='prec', line_width=2, color='#ebbd5b', source=source)
plt.add_tools(bokeh.models.HoverTool(
tooltips=[
( 'score', '@score{0.0000 a}'),
],
formatters={
'rec' : 'printf',
'prec' : 'printf',
},
mode='vline'
))
bokeh_io.save(plt)
示例11: plot_comparison
# 需要導入模塊: from bokeh import io [as 別名]
# 或者: from bokeh.io import save [as 別名]
def plot_comparison(experiments,
figure=None,
line_options=None,
title=None,
x_axis_label=None,
y_axis_label=None,
x_axis_type='linear',
y_axis_type='linear',
x_range=None,
y_range=None,
width=800,
height=400,
legend_text_font_size=None,
tools='pan,box_zoom,wheel_zoom,box_select,hover,reset,save',
figure_fn=bk_figure):
line_options = line_options or multi_line_opts(len(experiments))
if len(line_options) < len(experiments):
line_options += multi_line_opts(len(experiments) -
len(line_options))
if figure is None:
figure = figure_fn(title=title, tools=tools,
width=width, height=height,
x_axis_label=x_axis_label,
y_axis_label=y_axis_label,
x_axis_type=x_axis_type,
y_axis_type=y_axis_type,
x_range=x_range,
y_range=y_range)
plotted = False
for i, (name, result) in enumerate(experiments.items()):
if result is None or len(result) == 0:
continue
result_x, result_y = zip(*result)
figure.line(result_x, result_y, legend=name, **line_options[i])
plotted = True
if plotted:
figure.legend.click_policy = "hide"
if legend_text_font_size is not None:
figure.legend.label_text_font_size = legend_text_font_size
else:
figure = None
return figure