本文整理匯總了Python中bokeh.charts.Bar方法的典型用法代碼示例。如果您正苦於以下問題:Python charts.Bar方法的具體用法?Python charts.Bar怎麽用?Python charts.Bar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類bokeh.charts
的用法示例。
在下文中一共展示了charts.Bar方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: make_overview_bokeh
# 需要導入模塊: from bokeh import charts [as 別名]
# 或者: from bokeh.charts import Bar [as 別名]
def make_overview_bokeh(data):
if data:
temps = "".join(data)
values = re.findall(r'(\d+)', temps)
c_values = [int(value) for value in values]
c_keys = re.findall('[\u4e00-\u9fa5]+', temps)
s = pd.Series(c_values, index=c_keys)
data = s
# ?????????????????????
p = Bar(data,title="???", ylabel='?????', width=400, height=400,legend=None,tools="")
script, div = components(p, CDN)
return [script, div]
else:
return [0,file_hepler.get_image_path("no_overview.png")]
示例2: get_counties_plot
# 需要導入模塊: from bokeh import charts [as 別名]
# 或者: from bokeh.charts import Bar [as 別名]
def get_counties_plot(data_frame):
plot = Bar(data_frame, label='CTYNAME', values='TOT_POP', agg='max', plot_width=1200, plot_height=500,
title='Population by County', legend=False)
plot.xaxis.axis_label = 'County'
plot.yaxis.axis_label = 'Population'
plot.yaxis.formatter = NumeralTickFormatter(format="0a")
plot.sizing_mode = 'scale_width'
return plot
示例3: make_bar
# 需要導入模塊: from bokeh import charts [as 別名]
# 或者: from bokeh.charts import Bar [as 別名]
def make_bar():
job_val = job.value
x_name = axis_map[x_axis.value]
get_level_sql = 'select %s,count(*) as count from lagou_data_job where job_name="%s" group by %s order by count desc limit 0,15'%(x_name, job_val, x_name)
if(job_val == 'All'):
get_level_sql = 'select %s,count(*) as count from lagou_data_job group by %s order by count desc limit 0,15'%(x_name, x_name)
options = pd.read_sql(get_level_sql, con=mysql_cn)
x_options = options[x_name].values.tolist()
data = {}
if(x_name == 'aver_salary'):
salary = []
for i in [1,3,5,10]:
year_by_salary_sql = 'select avg(aver_salary) from lagou_data_job where job_name = "%s" and years = "%d"'%(job_val, i)
if(job_val == 'All'):
year_by_salary_sql = 'select avg(aver_salary) from lagou_data_job where years = "%d"'%(i)
df = pd.read_sql(year_by_salary_sql, con=mysql_cn)
sal_init = df['avg(aver_salary)'].values.tolist()[0]
sal = math.ceil(sal_init) if sal_init != None else 0
salary.append(sal)
data['count'] = salary
data[x_name] = [u'1-3?', u'3-5?', u'5-10?', u'10???']
elif(x_name == 'fields'):
field_count = []
for field in field_list:
get_field_sql = "select fields, count(*) as count from lagou_data_job where fields like '%"+ field +"%' and job_name = '%s' group by fields"%(job_val)
field_option = pd.read_sql(get_field_sql, con=mysql_cn)
field_value = sum(field_option['count'].values.tolist())
field_count.append(field_value)
data[x_name] = field_list
data['count'] = field_count
else:
y_values = options['count'].values.tolist()
data = {}
data[x_name] = x_options
data['count'] = y_values
p = Bar(data, values='count', label=x_name, agg='mean',
title=u"?%s????"%(x_axis.value), legend='top_right', width=600)
p.xaxis.axis_label = x_axis.value
p.yaxis.axis_label = u'??'
return p
示例4: make_bar
# 需要導入模塊: from bokeh import charts [as 別名]
# 或者: from bokeh.charts import Bar [as 別名]
def make_bar(counter, keywords, output_filename):
data = pd.Series(filter_counter(counter, keywords))
bar = Bar(data, title='Word Counts')
output_file(output_filename)
bar.show()
示例5: make_bar
# 需要導入模塊: from bokeh import charts [as 別名]
# 或者: from bokeh.charts import Bar [as 別名]
def make_bar():
lan_val = lan.value
x_name = axis_map[x_axis.value]
get_level_sql = 'select %s,count(*) as count from lagou_lan where lan="%s" group by %s order by count desc limit 0,15'%(x_name, lan_val, x_name)
if(lan_val == 'All'):
get_level_sql = 'select %s,count(*) as count from lagou_lan group by %s order by count desc limit 0,15'%(x_name, x_name)
options = pd.read_sql(get_level_sql, con=mysql_cn)
x_options = options[x_name].values.tolist()
data = {}
#???????
if(x_name == 'aver_salary'):
salary = []
for i in [1,3,5,10]:
year_by_salary_sql = 'select avg(aver_salary) from lagou_lan where lan = "%s" and years = "%d"'%(lan_val, i)
if(lan_val == 'All'):
year_by_salary_sql = 'select avg(aver_salary) from lagou_lan where years = "%d"'%(i)
df = pd.read_sql(year_by_salary_sql, con=mysql_cn)
sal_init = df['avg(aver_salary)'].values.tolist()[0]
sal = math.ceil(sal_init) if sal_init != None else 0
salary.append(sal)
data['count'] = salary
data[x_name] = [u'1-3?', u'3-5?', u'5-10?', u'10???']
elif(x_name == 'fields'):
field_count = []
for field in field_list:
get_field_sql = "select fields, count(*) as count from lagou_lan where fields like '%"+ field +"%' and lan = '%s' group by fields"%(lan_val)
field_option = pd.read_sql(get_field_sql, con=mysql_cn)
field_value = sum(field_option['count'].values.tolist())
field_count.append(field_value)
data[x_name] = field_list
data['count'] = field_count
else:
y_values = options['count'].values.tolist()
data = {}
data[x_name] = x_options
data['count'] = y_values
p = Bar(data, values='count', label=x_name, agg='mean',
title=u"?%s????"%(x_axis.value), legend='top_right', width=600)
p.xaxis.axis_label = x_axis.value
p.yaxis.axis_label = u'??'
return p
示例6: participation_plot
# 需要導入模塊: from bokeh import charts [as 別名]
# 或者: from bokeh.charts import Bar [as 別名]
def participation_plot(df_stitched_all, labels, member=None, member_names=None):
"""
Creates simple participation chart (no percentages in hover, Tabs with speaking turns, speaking time
:param df_stitched_all: a list of lists of df_stitched
:param labels: a list of dates/weeks for which the df_stitched lists are for (excluding 'Average')
:param member: Member who is viewing the report (serves as base of bar stacks). Either..
- member key if no member_names dictionary is given, or
- member name if member_names dictionary is given
:param member_names: A dictionary mapping member keys to member names (First Last format)
:return: bokeh plot
"""
participation_values = percentage_participation(df_stitched_all, labels, member_names=member_names)
if isinstance(participation_values, basestring):
participation_values = ast.literal_eval(participation_values)
if participation_values is None:
print('ERROR: No participation values found')
return (None, None)
# Turn participation_values into format needed for bokeh's stacked Bar Chart
data_dict = {'labels': [], 'member': [], 'turns': [], 'speak': []}
# To add an empty bar between Average and rest of bars,
# and to add an empty bar at the end for clearer legend positioning.
labels += ['', 'Average', '.']
def add_member(member):
# Add data to dictionary for Bargraph input
# data_dict['week_num'] += weeks
data_dict['labels'] += labels
data_dict['member'] += [member for label in labels]
for label in labels:
if label != 'Average':
if label in participation_values[member]:
data_dict['turns'] += [participation_values[member][label]['turns']]
data_dict['speak'] += [participation_values[member][label]['speak']]
else: # If member had no data for that week
data_dict['turns'] += [0]
data_dict['speak'] += [0]
else:
data_dict['turns'] += [participation_values[member]['Average']['turns']]
data_dict['speak'] += [participation_values[member]['Average']['speak']]
if member:
# Add 'You' first so that 'You' is on bottom of bar chart
add_member(member)
for key in participation_values:
if key != member:
add_member(key)
else:
for key in participation_values:
add_member(key)
plot = stack_bar(data_dict)
return plot