本文整理匯總了Python中board.Board方法的典型用法代碼示例。如果您正苦於以下問題:Python board.Board方法的具體用法?Python board.Board怎麽用?Python board.Board使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類board
的用法示例。
在下文中一共展示了board.Board方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: minimax
# 需要導入模塊: import board [as 別名]
# 或者: from board import Board [as 別名]
def minimax(board: Board, maximizing: bool, original_player: Piece, max_depth: int = 8) -> float:
# Base case – terminal position or maximum depth reached
if board.is_win or board.is_draw or max_depth == 0:
return board.evaluate(original_player)
# Recursive case - maximize your gains or minimize the opponent's gains
if maximizing:
best_eval: float = float("-inf") # arbitrarily low starting point
for move in board.legal_moves:
result: float = minimax(board.move(move), False, original_player, max_depth - 1)
best_eval = max(result, best_eval) # we want the move with the highest evaluation
return best_eval
else: # minimizing
worst_eval: float = float("inf")
for move in board.legal_moves:
result = minimax(board.move(move), True, original_player, max_depth - 1)
worst_eval = min(result, worst_eval) # we want the move with the lowest evaluation
return worst_eval
示例2: alphabeta
# 需要導入模塊: import board [as 別名]
# 或者: from board import Board [as 別名]
def alphabeta(board: Board, maximizing: bool, original_player: Piece, max_depth: int = 8, alpha: float = float("-inf"), beta: float = float("inf")) -> float:
# Base case – terminal position or maximum depth reached
if board.is_win or board.is_draw or max_depth == 0:
return board.evaluate(original_player)
# Recursive case - maximize your gains or minimize the opponent's gains
if maximizing:
for move in board.legal_moves:
result: float = alphabeta(board.move(move), False, original_player, max_depth - 1, alpha, beta)
alpha = max(result, alpha)
if beta <= alpha:
break
return alpha
else: # minimizing
for move in board.legal_moves:
result = alphabeta(board.move(move), True, original_player, max_depth - 1, alpha, beta)
beta = min(result, beta)
if beta <= alpha:
break
return beta
# Find the best possible move in the current position
# looking up to max_depth ahead
示例3: move
# 需要導入模塊: import board [as 別名]
# 或者: from board import Board [as 別名]
def move(self, location: Move) -> Board:
temp_position: List[TTTPiece] = self.position.copy()
temp_position[location] = self._turn
return TTTBoard(temp_position, self._turn.opposite)
示例4: move
# 需要導入模塊: import board [as 別名]
# 或者: from board import Board [as 別名]
def move(self, location: Move) -> Board:
temp_position: List[C4Board.Column] = self.position.copy()
for c in range(C4Board.NUM_COLUMNS):
temp_position[c] = self.position[c].copy()
temp_position[location].push(self._turn)
return C4Board(temp_position, self._turn.opposite)
示例5: find_best_move
# 需要導入模塊: import board [as 別名]
# 或者: from board import Board [as 別名]
def find_best_move(board: Board, max_depth: int = 8) -> Move:
best_eval: float = float("-inf")
best_move: Move = Move(-1)
for move in board.legal_moves:
result: float = alphabeta(board.move(move), False, board.turn, max_depth)
if result > best_eval:
best_eval = result
best_move = move
return best_move
示例6: __init__
# 需要導入模塊: import board [as 別名]
# 或者: from board import Board [as 別名]
def __init__(self, fen=default_fen, validate=True):
"""
Initialize the game board to the supplied FEN state (or the default
starting state if none is supplied), and determine whether to check
the validity of moves returned by `get_moves()`.
"""
self.board = Board()
self.state = State(' ', ' ', ' ', ' ', ' ')
self.move_history = []
self.fen_history = []
self.validate = validate
self.set_fen(fen=fen)
示例7: main
# 需要導入模塊: import board [as 別名]
# 或者: from board import Board [as 別名]
def main(argv):
actions = {}
actions["train"] = main_train
actions["show_tiles"] = main_show_tiles
actions["dev"] = main_dev
parser = argparse.ArgumentParser(description='A chess OCR application.')
parser.add_argument('filenames', metavar='filename', type=str, nargs='+',
help='The files to process.')
parser.add_argument('-e', dest='extract_boards', action='store_const',
const=True, default=False,
help='extract boards from images (default: use image as-is)')
parser.add_argument('-a', dest='action', default="show_tiles",
choices=["train", "show_tiles", "dev"],
help='action to perform (default: show_tiles)')
args = parser.parse_args()
action = actions[args.action]
for filename in args.filenames:
image = cv2.imread(filename)
print("---- %s ----" % filename)
if args.extract_boards:
print("Extracting Boards")
boards = extractBoards(image, extract_width, extract_height)
else:
boards = [image]
for b in boards:
print("Extracting Grid")
grid = extractGrid(b, 9, 9)
print(grid)
if grid is None:
print("Could not find Grid")
continue
print("Extracting Tiles")
tiles = extractTiles(b, grid, 100, 100)
b = Board(tiles, 8, 8)
print("Running action")
action(b, args)