當前位置: 首頁>>代碼示例>>Python>>正文


Python main_loop.MainLoop方法代碼示例

本文整理匯總了Python中blocks.main_loop.MainLoop方法的典型用法代碼示例。如果您正苦於以下問題:Python main_loop.MainLoop方法的具體用法?Python main_loop.MainLoop怎麽用?Python main_loop.MainLoop使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在blocks.main_loop的用法示例。


在下文中一共展示了main_loop.MainLoop方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: train

# 需要導入模塊: from blocks import main_loop [as 別名]
# 或者: from blocks.main_loop import MainLoop [as 別名]
def train(config, save_path, bokeh_name,
          params, bokeh_server, bokeh, test_tag, use_load_ext,
          load_log, fast_start):

    model, algorithm, data, extensions = initialize_all(
        config, save_path, bokeh_name,
        params, bokeh_server, bokeh, test_tag, use_load_ext,
        load_log, fast_start)

    # Save the config into the status
    log = NDarrayLog()
    log.status['_config'] = repr(config)
    main_loop = MainLoop(
        model=model, log=log, algorithm=algorithm,
        data_stream=data.get_stream("train"),
        extensions=extensions)
    main_loop.run() 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:19,代碼來源:main.py

示例2: test_main_loop

# 需要導入模塊: from blocks import main_loop [as 別名]
# 或者: from blocks.main_loop import MainLoop [as 別名]
def test_main_loop():
    old_config_profile_value = config.profile
    config.profile = True

    main_loop = MainLoop(
        MockAlgorithm(), IterableDataset(range(10)).get_example_stream(),
        extensions=[WriteBatchExtension(), FinishAfter(after_n_epochs=2)])
    main_loop.run()
    assert_raises(AttributeError, getattr, main_loop, 'model')

    assert main_loop.log.status['iterations_done'] == 20
    assert main_loop.log.status['_epoch_ends'] == [10, 20]
    assert len(main_loop.log) == 20
    for i in range(20):
        assert main_loop.log[i + 1]['batch'] == {'data': i % 10}

    config.profile = old_config_profile_value 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:19,代碼來源:test_main_loop.py

示例3: load_log

# 需要導入模塊: from blocks import main_loop [as 別名]
# 或者: from blocks.main_loop import MainLoop [as 別名]
def load_log(fname):
    """Load a :class:`TrainingLog` object from disk.

    This function automatically handles various file formats that contain
    an instance of an :class:`TrainingLog`. This includes a pickled
    Log object, a pickled :class:`MainLoop` or an experiment dump (TODO).

    """
    with change_recursion_limit(config.recursion_limit):
        with open(fname, 'rb') as f:
            from_disk = load(f)
        # TODO: Load "dumped" experiments

    if isinstance(from_disk, TrainingLog):
        log = from_disk
    elif isinstance(from_disk, MainLoop):
        log = from_disk.log
        del from_disk
    else:
        raise ValueError("Could not load '{}': Unrecognized content.")

    return log 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:24,代碼來源:plot.py

示例4: test_load_log

# 需要導入模塊: from blocks import main_loop [as 別名]
# 或者: from blocks.main_loop import MainLoop [as 別名]
def test_load_log():
    log = TrainingLog()
    log[0]['channel0'] = 0

    # test simple TrainingLog pickles
    with tempfile.NamedTemporaryFile() as f:
        dump(log, f)
        f.flush()

        log2 = plot.load_log(f.name)
        assert log2[0]['channel0'] == 0

    # test MainLoop pickles
    main_loop = MainLoop(model=None, data_stream=None,
                         algorithm=None, log=log)

    with tempfile.NamedTemporaryFile() as f:
        dump(main_loop, f)
        f.flush()

        log2 = plot.load_log(f.name)
        assert log2[0]['channel0'] == 0 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:24,代碼來源:test_plot.py

示例5: __init__

# 需要導入模塊: from blocks import main_loop [as 別名]
# 或者: from blocks.main_loop import MainLoop [as 別名]
def __init__(self, **kwargs):
        super(MainLoop, self).__init__(**kwargs) 
開發者ID:johnarevalo,項目名稱:blocks-char-rnn,代碼行數:4,代碼來源:utils.py

示例6: test_training_resumption

# 需要導入模塊: from blocks import main_loop [as 別名]
# 或者: from blocks.main_loop import MainLoop [as 別名]
def test_training_resumption():
    def do_test(with_serialization):
        data_stream = IterableDataset(range(10)).get_example_stream()
        main_loop = MainLoop(
            MockAlgorithm(), data_stream,
            extensions=[WriteBatchExtension(),
                        FinishAfter(after_n_batches=14)])
        main_loop.run()
        assert main_loop.log.status['iterations_done'] == 14

        if with_serialization:
            main_loop = cPickle.loads(cPickle.dumps(main_loop))

        finish_after = unpack(
            [ext for ext in main_loop.extensions
             if isinstance(ext, FinishAfter)], singleton=True)
        finish_after.add_condition(
            ["after_batch"],
            predicate=lambda log: log.status['iterations_done'] == 27)
        main_loop.run()
        assert main_loop.log.status['iterations_done'] == 27
        assert main_loop.log.status['epochs_done'] == 2
        for i in range(27):
            assert main_loop.log[i + 1]['batch'] == {"data": i % 10}

    do_test(False)
    do_test(True) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:29,代碼來源:test_main_loop.py

示例7: test_shared_variable_modifier

# 需要導入模塊: from blocks import main_loop [as 別名]
# 或者: from blocks.main_loop import MainLoop [as 別名]
def test_shared_variable_modifier():
    weights = numpy.array([-1, 1], dtype=theano.config.floatX)
    features = [numpy.array(f, dtype=theano.config.floatX)
                for f in [[1, 2], [3, 4], [5, 6]]]
    targets = [(weights * f).sum() for f in features]
    n_batches = 3
    dataset = IterableDataset(dict(features=features, targets=targets))

    x = tensor.vector('features')
    y = tensor.scalar('targets')
    W = shared_floatx([0, 0], name='W')
    cost = ((x * W).sum() - y) ** 2
    cost.name = 'cost'

    step_rule = Scale(0.001)
    sgd = GradientDescent(cost=cost, parameters=[W],
                          step_rule=step_rule)
    main_loop = MainLoop(
        model=None, data_stream=dataset.get_example_stream(),
        algorithm=sgd,
        extensions=[
            FinishAfter(after_n_epochs=1),
            SharedVariableModifier(
                step_rule.learning_rate,
                lambda n: numpy.cast[theano.config.floatX](10. / n)
            )])

    main_loop.run()

    assert_allclose(step_rule.learning_rate.get_value(),
                    numpy.cast[theano.config.floatX](10. / n_batches)) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:33,代碼來源:test_training.py

示例8: test_shared_variable_modifier_two_parameters

# 需要導入模塊: from blocks import main_loop [as 別名]
# 或者: from blocks.main_loop import MainLoop [as 別名]
def test_shared_variable_modifier_two_parameters():
    weights = numpy.array([-1, 1], dtype=theano.config.floatX)
    features = [numpy.array(f, dtype=theano.config.floatX)
                for f in [[1, 2], [3, 4], [5, 6]]]
    targets = [(weights * f).sum() for f in features]
    n_batches = 3
    dataset = IterableDataset(dict(features=features, targets=targets))

    x = tensor.vector('features')
    y = tensor.scalar('targets')
    W = shared_floatx([0, 0], name='W')
    cost = ((x * W).sum() - y) ** 2
    cost.name = 'cost'

    step_rule = Scale(0.001)
    sgd = GradientDescent(cost=cost, parameters=[W],
                          step_rule=step_rule)
    modifier = SharedVariableModifier(
        step_rule.learning_rate,
        lambda _, val: numpy.cast[theano.config.floatX](val * 0.2))
    main_loop = MainLoop(
        model=None, data_stream=dataset.get_example_stream(),
        algorithm=sgd,
        extensions=[FinishAfter(after_n_epochs=1), modifier])

    main_loop.run()

    new_value = step_rule.learning_rate.get_value()
    assert_allclose(new_value,
                    0.001 * 0.2 ** n_batches,
                    atol=1e-5) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:33,代碼來源:test_training.py

示例9: main

# 需要導入模塊: from blocks import main_loop [as 別名]
# 或者: from blocks.main_loop import MainLoop [as 別名]
def main(save_to, num_batches):
    mlp = MLP([Tanh(), Identity()], [1, 10, 1],
              weights_init=IsotropicGaussian(0.01),
              biases_init=Constant(0), seed=1)
    mlp.initialize()
    x = tensor.vector('numbers')
    y = tensor.vector('roots')
    cost = SquaredError().apply(y[:, None], mlp.apply(x[:, None]))
    cost.name = "cost"

    main_loop = MainLoop(
        GradientDescent(
            cost=cost, parameters=ComputationGraph(cost).parameters,
            step_rule=Scale(learning_rate=0.001)),
        get_data_stream(range(100)),
        model=Model(cost),
        extensions=[
            Timing(),
            FinishAfter(after_n_batches=num_batches),
            DataStreamMonitoring(
                [cost], get_data_stream(range(100, 200)),
                prefix="test"),
            TrainingDataMonitoring([cost], after_epoch=True),
            Checkpoint(save_to),
            Printing()])
    main_loop.run()
    return main_loop 
開發者ID:mila-iqia,項目名稱:blocks-examples,代碼行數:29,代碼來源:__init__.py

示例10: test_training_data_monitoring

# 需要導入模塊: from blocks import main_loop [as 別名]
# 或者: from blocks.main_loop import MainLoop [as 別名]
def test_training_data_monitoring():
    weights = numpy.array([-1, 1], dtype=theano.config.floatX)
    features = [numpy.array(f, dtype=theano.config.floatX)
                for f in [[1, 2], [3, 4], [5, 6]]]
    targets = [(weights * f).sum() for f in features]
    n_batches = 3
    dataset = IterableDataset(dict(features=features, targets=targets))

    x = tensor.vector('features')
    y = tensor.scalar('targets')
    W = shared_floatx([0, 0], name='W')
    V = shared_floatx(7, name='V')
    W_sum = W.sum().copy(name='W_sum')
    cost = ((x * W).sum() - y) ** 2
    cost.name = 'cost'

    class TrueCostExtension(TrainingExtension):

        def before_batch(self, data):
            self.main_loop.log.current_row['true_cost'] = (
                ((W.get_value() * data["features"]).sum() -
                 data["targets"]) ** 2)

    main_loop = MainLoop(
        model=None, data_stream=dataset.get_example_stream(),
        algorithm=GradientDescent(cost=cost, parameters=[W],
                                  step_rule=Scale(0.001)),
        extensions=[
            FinishAfter(after_n_epochs=1),
            TrainingDataMonitoring([W_sum, cost, V], prefix="train1",
                                   after_batch=True),
            TrainingDataMonitoring([aggregation.mean(W_sum), cost],
                                   prefix="train2", after_epoch=True),
            TrueCostExtension()])

    main_loop.run()

    # Check monitoring of a shared varible
    assert_allclose(main_loop.log.current_row['train1_V'], 7.0)

    for i in range(n_batches):
        # The ground truth is written to the log before the batch is
        # processed, where as the extension writes after the batch is
        # processed. This is why the iteration numbers differs here.
        assert_allclose(main_loop.log[i]['true_cost'],
                        main_loop.log[i + 1]['train1_cost'])
    assert_allclose(
        main_loop.log[n_batches]['train2_cost'],
        sum([main_loop.log[i]['true_cost']
             for i in range(n_batches)]) / n_batches)
    assert_allclose(
        main_loop.log[n_batches]['train2_W_sum'],
        sum([main_loop.log[i]['train1_W_sum']
             for i in range(1, n_batches + 1)]) / n_batches) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:56,代碼來源:test_monitoring.py

示例11: test_checkpointing

# 需要導入模塊: from blocks import main_loop [as 別名]
# 或者: from blocks.main_loop import MainLoop [as 別名]
def test_checkpointing():
    # Create a main loop and checkpoint it
    mlp = MLP(activations=[None], dims=[10, 10], weights_init=Constant(1.),
              use_bias=False)
    mlp.initialize()
    W = mlp.linear_transformations[0].W
    x = tensor.vector('data')
    cost = mlp.apply(x).mean()
    data = numpy.random.rand(10, 10).astype(theano.config.floatX)
    data_stream = IterableDataset(data).get_example_stream()

    main_loop = MainLoop(
        data_stream=data_stream,
        algorithm=GradientDescent(cost=cost, parameters=[W]),
        extensions=[FinishAfter(after_n_batches=5),
                    Checkpoint('myweirdmodel.tar', parameters=[W])]
    )
    main_loop.run()

    # Load it again
    old_value = W.get_value()
    W.set_value(old_value * 2)
    main_loop = MainLoop(
        model=Model(cost),
        data_stream=data_stream,
        algorithm=GradientDescent(cost=cost, parameters=[W]),
        extensions=[Load('myweirdmodel.tar')]
    )
    main_loop.extensions[0].main_loop = main_loop
    main_loop._run_extensions('before_training')
    assert_allclose(W.get_value(), old_value)

    # Make sure things work too if the model was never saved before
    main_loop = MainLoop(
        model=Model(cost),
        data_stream=data_stream,
        algorithm=GradientDescent(cost=cost, parameters=[W]),
        extensions=[Load('mynonexisting.tar')]
    )
    main_loop.extensions[0].main_loop = main_loop
    main_loop._run_extensions('before_training')

    # Cleaning
    if os.path.exists('myweirdmodel.tar'):
        os.remove('myweirdmodel.tar') 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:47,代碼來源:test_saveload.py

示例12: main

# 需要導入模塊: from blocks import main_loop [as 別名]
# 或者: from blocks.main_loop import MainLoop [as 別名]
def main(save_to, num_epochs):
    mlp = MLP([Tanh(), Softmax()], [784, 100, 10],
              weights_init=IsotropicGaussian(0.01),
              biases_init=Constant(0))
    mlp.initialize()
    x = tensor.matrix('features')
    y = tensor.lmatrix('targets')
    probs = mlp.apply(x)
    cost = CategoricalCrossEntropy().apply(y.flatten(), probs)
    error_rate = MisclassificationRate().apply(y.flatten(), probs)

    cg = ComputationGraph([cost])
    W1, W2 = VariableFilter(roles=[WEIGHT])(cg.variables)
    cost = cost + .00005 * (W1 ** 2).sum() + .00005 * (W2 ** 2).sum()
    cost.name = 'final_cost'

    mnist_train = MNIST(("train",))
    mnist_test = MNIST(("test",))

    algorithm = GradientDescent(
        cost=cost, parameters=cg.parameters,
        step_rule=Scale(learning_rate=0.1))
    extensions = [Timing(),
                  FinishAfter(after_n_epochs=num_epochs),
                  DataStreamMonitoring(
                      [cost, error_rate],
                      Flatten(
                          DataStream.default_stream(
                              mnist_test,
                              iteration_scheme=SequentialScheme(
                                  mnist_test.num_examples, 500)),
                          which_sources=('features',)),
                      prefix="test"),
                  TrainingDataMonitoring(
                      [cost, error_rate,
                       aggregation.mean(algorithm.total_gradient_norm)],
                      prefix="train",
                      after_epoch=True),
                  Checkpoint(save_to),
                  Printing()]

    if BLOCKS_EXTRAS_AVAILABLE:
        extensions.append(Plot(
            'MNIST example',
            channels=[
                ['test_final_cost',
                 'test_misclassificationrate_apply_error_rate'],
                ['train_total_gradient_norm']]))

    main_loop = MainLoop(
        algorithm,
        Flatten(
            DataStream.default_stream(
                mnist_train,
                iteration_scheme=SequentialScheme(
                    mnist_train.num_examples, 50)),
            which_sources=('features',)),
        model=Model(cost),
        extensions=extensions)

    main_loop.run() 
開發者ID:mila-iqia,項目名稱:blocks-examples,代碼行數:63,代碼來源:__init__.py

示例13: run

# 需要導入模塊: from blocks import main_loop [as 別名]
# 或者: from blocks.main_loop import MainLoop [as 別名]
def run():
    streams = create_celeba_streams(training_batch_size=100,
                                    monitoring_batch_size=500,
                                    include_targets=True)
    main_loop_stream = streams[0]
    train_monitor_stream = streams[1]
    valid_monitor_stream = streams[2]

    cg, bn_dropout_cg = create_training_computation_graphs()

    # Compute parameter updates for the batch normalization population
    # statistics. They are updated following an exponential moving average.
    pop_updates = get_batch_normalization_updates(bn_dropout_cg)
    decay_rate = 0.05
    extra_updates = [(p, m * decay_rate + p * (1 - decay_rate))
                     for p, m in pop_updates]

    # Prepare algorithm
    step_rule = Adam()
    algorithm = GradientDescent(cost=bn_dropout_cg.outputs[0],
                                parameters=bn_dropout_cg.parameters,
                                step_rule=step_rule)
    algorithm.add_updates(extra_updates)

    # Prepare monitoring
    cost = bn_dropout_cg.outputs[0]
    cost.name = 'cost'
    train_monitoring = DataStreamMonitoring(
        [cost], train_monitor_stream, prefix="train",
        before_first_epoch=False, after_epoch=False, after_training=True,
        updates=extra_updates)

    cost, accuracy = cg.outputs
    cost.name = 'cost'
    accuracy.name = 'accuracy'
    monitored_quantities = [cost, accuracy]
    valid_monitoring = DataStreamMonitoring(
        monitored_quantities, valid_monitor_stream, prefix="valid",
        before_first_epoch=False, after_epoch=False, every_n_epochs=5)

    # Prepare checkpoint
    checkpoint = Checkpoint(
        'celeba_classifier.zip', every_n_epochs=5, use_cpickle=True)

    extensions = [Timing(), FinishAfter(after_n_epochs=50), train_monitoring,
                  valid_monitoring, checkpoint, Printing(), ProgressBar()]
    main_loop = MainLoop(data_stream=main_loop_stream, algorithm=algorithm,
                         extensions=extensions)
    main_loop.run() 
開發者ID:vdumoulin,項目名稱:discgen,代碼行數:51,代碼來源:train_celeba_classifier.py

示例14: run

# 需要導入模塊: from blocks import main_loop [as 別名]
# 或者: from blocks.main_loop import MainLoop [as 別名]
def run(discriminative_regularization=True):
    streams = create_celeba_streams(training_batch_size=100,
                                    monitoring_batch_size=500,
                                    include_targets=False)
    main_loop_stream, train_monitor_stream, valid_monitor_stream = streams[:3]

    # Compute parameter updates for the batch normalization population
    # statistics. They are updated following an exponential moving average.
    rval = create_training_computation_graphs(discriminative_regularization)
    cg, bn_cg, variance_parameters = rval
    pop_updates = list(
        set(get_batch_normalization_updates(bn_cg, allow_duplicates=True)))
    decay_rate = 0.05
    extra_updates = [(p, m * decay_rate + p * (1 - decay_rate))
                     for p, m in pop_updates]

    model = Model(bn_cg.outputs[0])
    selector = Selector(
        find_bricks(
            model.top_bricks,
            lambda brick: brick.name in ('encoder_convnet', 'encoder_mlp',
                                         'decoder_convnet', 'decoder_mlp')))
    parameters = list(selector.get_parameters().values()) + variance_parameters

    # Prepare algorithm
    step_rule = Adam()
    algorithm = GradientDescent(cost=bn_cg.outputs[0],
                                parameters=parameters,
                                step_rule=step_rule)
    algorithm.add_updates(extra_updates)

    # Prepare monitoring
    monitored_quantities_list = []
    for graph in [bn_cg, cg]:
        cost, kl_term, reconstruction_term = graph.outputs
        cost.name = 'nll_upper_bound'
        avg_kl_term = kl_term.mean(axis=0)
        avg_kl_term.name = 'avg_kl_term'
        avg_reconstruction_term = -reconstruction_term.mean(axis=0)
        avg_reconstruction_term.name = 'avg_reconstruction_term'
        monitored_quantities_list.append(
            [cost, avg_kl_term, avg_reconstruction_term])
    train_monitoring = DataStreamMonitoring(
        monitored_quantities_list[0], train_monitor_stream, prefix="train",
        updates=extra_updates, after_epoch=False, before_first_epoch=False,
        every_n_epochs=5)
    valid_monitoring = DataStreamMonitoring(
        monitored_quantities_list[1], valid_monitor_stream, prefix="valid",
        after_epoch=False, before_first_epoch=False, every_n_epochs=5)

    # Prepare checkpoint
    save_path = 'celeba_vae_{}regularization.zip'.format(
        '' if discriminative_regularization else 'no_')
    checkpoint = Checkpoint(save_path, every_n_epochs=5, use_cpickle=True)

    extensions = [Timing(), FinishAfter(after_n_epochs=75), train_monitoring,
                  valid_monitoring, checkpoint, Printing(), ProgressBar()]
    main_loop = MainLoop(data_stream=main_loop_stream,
                         algorithm=algorithm, extensions=extensions)
    main_loop.run() 
開發者ID:vdumoulin,項目名稱:discgen,代碼行數:62,代碼來源:train_celeba_vae.py

示例15: create_main_loop

# 需要導入模塊: from blocks import main_loop [as 別名]
# 或者: from blocks.main_loop import MainLoop [as 別名]
def create_main_loop(self):
        model, bn_model, bn_updates = self.create_models()
        gan, = bn_model.top_bricks
        discriminator_loss, generator_loss = bn_model.outputs
        step_rule = Adam(learning_rate=self._config["learning_rate"], beta1=self._config["beta1"])
        algorithm = ali_algorithm(discriminator_loss, gan.discriminator_parameters, step_rule, generator_loss, gan.generator_parameters, step_rule)
        algorithm.add_updates(bn_updates)
        streams = create_packing_gaussian_mixture_data_streams(
            num_packings=self._config["num_packing"], 
            batch_size=self._config["batch_size"], 
            monitoring_batch_size=self._config["monitoring_batch_size"], 
            means=self._config["x_mode_means"], 
            variances=self._config["x_mode_variances"], 
            priors=self._config["x_mode_priors"],
            num_examples=self._config["num_sample"])
        main_loop_stream, train_monitor_stream, valid_monitor_stream = streams
        bn_monitored_variables = (
            [v for v in bn_model.auxiliary_variables if 'norm' not in v.name] +
            bn_model.outputs)
        monitored_variables = (
            [v for v in model.auxiliary_variables if 'norm' not in v.name] +
            model.outputs)
        extensions = [
            Timing(),
            FinishAfter(after_n_epochs=self._config["num_epoch"]),
            DataStreamMonitoring(
                bn_monitored_variables, train_monitor_stream, prefix="train",
                updates=bn_updates),
            DataStreamMonitoring(
                monitored_variables, valid_monitor_stream, prefix="valid"),
            Checkpoint(os.path.join(self._work_dir, self._config["main_loop_file"]), after_epoch=True, after_training=True, use_cpickle=True),
            ProgressBar(),
            Printing(),
        ]
        if self._config["log_models"]:
            extensions.append(ModelLogger(folder=self._work_dir, after_epoch=True))
        if self._config["log_figures"]:
            extensions.append(GraphLogger(num_modes=self._config["num_zmode"], num_samples=self._config["num_log_figure_sample"], dimension=self._config["num_zdim"], r=self._config["z_mode_r"], std=self._config["z_mode_std"], folder=self._work_dir, after_epoch=True, after_training=True))
        if self._config["log_metrics"]:
            extensions.append(MetricLogger(means=self._config["x_mode_means"], variances=self._config["x_mode_variances"], folder=self._work_dir, after_epoch=True))
        main_loop = MainLoop(model=bn_model, data_stream=main_loop_stream, algorithm=algorithm, extensions=extensions)
        return main_loop 
開發者ID:fjxmlzn,項目名稱:PacGAN,代碼行數:44,代碼來源:pacgan_task.py


注:本文中的blocks.main_loop.MainLoop方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。