當前位置: 首頁>>代碼示例>>Python>>正文


Python initialization.Uniform方法代碼示例

本文整理匯總了Python中blocks.initialization.Uniform方法的典型用法代碼示例。如果您正苦於以下問題:Python initialization.Uniform方法的具體用法?Python initialization.Uniform怎麽用?Python initialization.Uniform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在blocks.initialization的用法示例。


在下文中一共展示了initialization.Uniform方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_uniform

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Uniform [as 別名]
def test_uniform():
    rng = numpy.random.RandomState(1)

    def check_uniform(rng, mean, width, std, shape):
        weights = Uniform(mean=mean, width=width,
                          std=std).generate(rng, shape)
        assert weights.shape == shape
        assert weights.dtype == theano.config.floatX
        assert_allclose(weights.mean(), mean, atol=1e-2)
        if width is not None:
            std_ = width / numpy.sqrt(12)
        else:
            std_ = std
        assert_allclose(std_, weights.std(), atol=1e-2)
    yield check_uniform, rng, 0, 0.05, None, (500, 600)
    yield check_uniform, rng, 0, None, 0.001, (600, 500)
    yield check_uniform, rng, 5, None, 0.004, (700, 300)

    assert_raises(ValueError, Uniform, 0, 1, 1) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:21,代碼來源:test_initialization.py

示例2: setUp

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Uniform [as 別名]
def setUp(self):
        self.readout = SoftmaxReadout(
            input_names=['states1', 'states2'],
            num_tokens=4, input_dims=[2, 3],
            weights_init=Uniform(width=1.0),
            biases_init=Uniform(width=1.0),
            seed=1)
        self.readout.initialize()

        self.states1 = numpy.array(
            [[[1., 2.]], [[2., 1.]]],
            dtype=theano.config.floatX)
        self.states2 = numpy.array(
            [[[3., 4., 5.]], [[5., 4., 3.]]],
            dtype=theano.config.floatX)
        self.merged = (
            self.states1.dot(self.readout.merge.children[0].W.get_value()) +
            self.states2.dot(self.readout.merge.children[1].W.get_value()) +
            self.readout.post_merge.parameters[0].get_value()) 
開發者ID:mila-iqia,項目名稱:blocks-extras,代碼行數:21,代碼來源:test_sequence_generator2.py

示例3: initialize

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Uniform [as 別名]
def initialize(to_init):
    for bricks in to_init:
        bricks.weights_init = initialization.Uniform(width=0.08)
        bricks.biases_init = initialization.Constant(0)
        bricks.initialize() 
開發者ID:johnarevalo,項目名稱:blocks-char-rnn,代碼行數:7,代碼來源:model.py

示例4: initialize_data_and_model

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Uniform [as 別名]
def initialize_data_and_model(config, train_phase, layout='dict'):
    c = config
    fuel_path = fuel.config.data_path[0]
    vocab_main = None
    vocab_keys = None
    if not c['encoder']:
        if not c['vocab_keys_path']:
            raise ValueError('Error: Should specify vocab_keys_path when no encoder')
        vocab_keys = Vocabulary(
            os.path.join(fuel.config.data_path[0], c['vocab_keys_path']))

        
    if c['vocab_path']:
        vocab_main = Vocabulary(
            os.path.join(fuel.config.data_path[0], c['vocab_path']))
    # TODO: change name of class LanguageModellingData... very ill-named.
    data = LanguageModellingData(c['data_path'], layout, vocab=vocab_main)

    vocab_main = data.vocab

    model = Seq2Seq(c['emb_dim'], c['dim'], c['num_input_words'],
                       c['num_output_words'], data.vocab,
                       proximity_coef = c['proximity_coef'],
                       proximity_distance = c['proximity_distance'],
                       encoder = c['encoder'],
                       decoder = c['decoder'],
                       shared_rnn = c['shared_rnn'],
                       translate_layer = c['translate_layer'],
                       word_dropout = c['word_dropout'],  
                       tied_in_out = c['tied_in_out'],
                       vocab_keys = vocab_keys,
                       reconstruction_coef = c['reconstruction_coef'],  
                       provide_targets = c['provide_targets'],
                       weights_init=Uniform(width=0.1),
                       biases_init=Constant(0.))
                       
    model.initialize()

    if c['embedding_path'] and ((train_phase or c['freeze_pretrained']) or
                                c['provide_targets']):
        if c['provide_targets'] and c['freeze_pretrained']:
            raise ValueError("Can't provide_targets and use freeze_pretrained."
                             "In that case, simply use freeze_pretrained")
                            
        # if encoder embeddings are frozen, then we should load them 
        # as they're not saved with the models parameters
        emb_full_path = os.path.join(fuel_path, c['embedding_path'])
        embedding_matrix = numpy.load(emb_full_path)
        if c['provide_targets']:
            model.set_def_embeddings(embedding_matrix, 'target')
            logger.debug("Pre-trained targets loaded")
        else:
            model.set_def_embeddings(embedding_matrix, 'main')
            logger.debug("Pre-trained encoder embeddings loaded")

    return data, model 
開發者ID:tombosc,項目名稱:cpae,代碼行數:58,代碼來源:def_autoencoder_training.py


注:本文中的blocks.initialization.Uniform方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。