當前位置: 首頁>>代碼示例>>Python>>正文


Python initialization.Constant方法代碼示例

本文整理匯總了Python中blocks.initialization.Constant方法的典型用法代碼示例。如果您正苦於以下問題:Python initialization.Constant方法的具體用法?Python initialization.Constant怎麽用?Python initialization.Constant使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在blocks.initialization的用法示例。


在下文中一共展示了initialization.Constant方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_convolutional

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Constant [as 別名]
def test_convolutional():
    x = tensor.tensor4('x')
    num_channels = 4
    num_filters = 3
    batch_size = 5
    filter_size = (3, 3)
    conv = Convolutional(filter_size, num_filters, num_channels,
                         image_size=(17, 13), weights_init=Constant(1.),
                         biases_init=Constant(5.))
    conv.initialize()
    y = conv.apply(x)
    func = function([x], y)

    x_val = numpy.ones((batch_size, num_channels, 17, 13),
                       dtype=theano.config.floatX)
    assert_allclose(func(x_val),
                    numpy.prod(filter_size) * num_channels *
                    numpy.ones((batch_size, num_filters, 15, 11)) + 5)
    conv.image_size = (17, 13)
    conv.batch_size = 2  # This should have effect on get_dim
    assert conv.get_dim('output') == (num_filters, 15, 11) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:23,代碼來源:test_conv.py

示例2: test_convolutional_transpose

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Constant [as 別名]
def test_convolutional_transpose():
    x = tensor.tensor4('x')
    num_channels = 4
    num_filters = 3
    image_size = (8, 6)
    original_image_size = (17, 13)
    batch_size = 5
    filter_size = (3, 3)
    step = (2, 2)
    conv = ConvolutionalTranspose(
        original_image_size, filter_size, num_filters, num_channels, step=step,
        image_size=image_size, weights_init=Constant(1.),
        biases_init=Constant(5.))
    conv.initialize()
    y = conv.apply(x)
    func = function([x], y)

    x_val = numpy.ones((batch_size, num_channels) + image_size,
                       dtype=theano.config.floatX)
    expected_value = num_channels * numpy.ones(
        (batch_size, num_filters) + original_image_size)
    expected_value[:, :, 2:-2:2, :] += num_channels
    expected_value[:, :, :, 2:-2:2] += num_channels
    expected_value[:, :, 2:-2:2, 2:-2:2] += num_channels
    assert_allclose(func(x_val), expected_value + 5) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:27,代碼來源:test_conv.py

示例3: test_no_input_size

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Constant [as 別名]
def test_no_input_size():
    # suppose x is outputted by some RNN
    x = tensor.tensor4('x')
    filter_size = (1, 3)
    num_filters = 2
    num_channels = 5
    c = Convolutional(filter_size, num_filters, num_channels, tied_biases=True,
                      weights_init=Constant(1.), biases_init=Constant(1.))
    c.initialize()
    out = c.apply(x)
    assert c.get_dim('output') == (2, None, None)
    assert out.ndim == 4

    c = Convolutional(filter_size, num_filters, num_channels,
                      tied_biases=False, weights_init=Constant(1.),
                      biases_init=Constant(1.))
    assert_raises_regexp(ValueError, 'Cannot infer bias size \S+',
                         c.initialize) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:20,代碼來源:test_conv.py

示例4: test_linear

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Constant [as 別名]
def test_linear():
    x = tensor.matrix()

    linear = Linear(input_dim=16, output_dim=8, weights_init=Constant(2),
                    biases_init=Constant(1))
    y = linear.apply(x)
    linear.initialize()
    x_val = numpy.ones((4, 16), dtype=theano.config.floatX)
    assert_allclose(
        y.eval({x: x_val}),
        x_val.dot(2 * numpy.ones((16, 8))) + numpy.ones((4, 8)))

    linear = Linear(input_dim=16, output_dim=8, weights_init=Constant(2),
                    use_bias=False)
    y = linear.apply(x)
    linear.initialize()
    x_val = numpy.ones((4, 16), dtype=theano.config.floatX)
    assert_allclose(y.eval({x: x_val}), x_val.dot(2 * numpy.ones((16, 8)))) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:20,代碼來源:test_bricks.py

示例5: test_mlp

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Constant [as 別名]
def test_mlp():
    x = tensor.matrix()
    x_val = numpy.random.rand(2, 16).astype(theano.config.floatX)
    mlp = MLP(activations=[Tanh(), None], dims=[16, 8, 4],
              weights_init=Constant(1), biases_init=Constant(1))
    y = mlp.apply(x)
    mlp.initialize()
    assert_allclose(
        numpy.tanh(x_val.dot(numpy.ones((16, 8))) + numpy.ones((2, 8))).dot(
            numpy.ones((8, 4))) + numpy.ones((2, 4)),
        y.eval({x: x_val}), rtol=1e-06)

    mlp = MLP(activations=[None], weights_init=Constant(1), use_bias=False)
    mlp.dims = [16, 8]
    y = mlp.apply(x)
    mlp.initialize()
    assert_allclose(x_val.dot(numpy.ones((16, 8))),
                    y.eval({x: x_val}), rtol=1e-06)
    assert mlp.rng == mlp.linear_transformations[0].rng 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:21,代碼來源:test_bricks.py

示例6: test_mlp_apply

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Constant [as 別名]
def test_mlp_apply():
    x = tensor.matrix()
    x_val = numpy.random.rand(2, 16).astype(theano.config.floatX)
    mlp = MLP(activations=[Tanh().apply, None], dims=[16, 8, 4],
              weights_init=Constant(1), biases_init=Constant(1))
    y = mlp.apply(x)
    mlp.initialize()
    assert_allclose(
        numpy.tanh(x_val.dot(numpy.ones((16, 8))) + numpy.ones((2, 8))).dot(
            numpy.ones((8, 4))) + numpy.ones((2, 4)),
        y.eval({x: x_val}), rtol=1e-06)

    mlp = MLP(activations=[None], weights_init=Constant(1), use_bias=False)
    mlp.dims = [16, 8]
    y = mlp.apply(x)
    mlp.initialize()
    assert_allclose(x_val.dot(numpy.ones((16, 8))),
                    y.eval({x: x_val}), rtol=1e-06)
    assert mlp.rng == mlp.linear_transformations[0].rng 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:21,代碼來源:test_bricks.py

示例7: test_sequence_variable_outputs

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Constant [as 別名]
def test_sequence_variable_outputs():
    x = tensor.matrix()

    linear_1 = Linear(input_dim=16, output_dim=8, weights_init=Constant(2),
                      biases_init=Constant(1))

    fork = Fork(input_dim=8, output_names=['linear_2_1', 'linear_2_2'],
                output_dims=[4, 5], prototype=Linear(),
                weights_init=Constant(3), biases_init=Constant(4))
    sequence = Sequence([linear_1.apply, fork.apply])
    sequence.initialize()
    y_1, y_2 = sequence.apply(x)
    x_val = numpy.ones((4, 16), dtype=theano.config.floatX)
    assert_allclose(
        y_1.eval({x: x_val}),
        (x_val.dot(2 * numpy.ones((16, 8))) + numpy.ones((4, 8))).dot(
            3 * numpy.ones((8, 4))) + 4 * numpy.ones((4, 4)))
    assert_allclose(
        y_2.eval({x: x_val}),
        (x_val.dot(2 * numpy.ones((16, 8))) + numpy.ones((4, 8))).dot(
            3 * numpy.ones((8, 5))) + 4 * numpy.ones((4, 5))) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:23,代碼來源:test_bricks.py

示例8: test_sequence_variable_inputs

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Constant [as 別名]
def test_sequence_variable_inputs():
    x, y = tensor.matrix(), tensor.matrix()

    parallel_1 = Parallel(input_names=['input_1', 'input_2'],
                          input_dims=[4, 5], output_dims=[3, 2],
                          prototype=Linear(), weights_init=Constant(2),
                          biases_init=Constant(1))
    parallel_2 = Parallel(input_names=['input_1', 'input_2'],
                          input_dims=[3, 2], output_dims=[5, 4],
                          prototype=Linear(), weights_init=Constant(2),
                          biases_init=Constant(1))
    sequence = Sequence([parallel_1.apply, parallel_2.apply])
    sequence.initialize()
    new_x, new_y = sequence.apply(x, y)
    x_val = numpy.ones((4, 4), dtype=theano.config.floatX)
    y_val = numpy.ones((4, 5), dtype=theano.config.floatX)
    assert_allclose(
        new_x.eval({x: x_val}),
        (x_val.dot(2 * numpy.ones((4, 3))) + numpy.ones((4, 3))).dot(
            2 * numpy.ones((3, 5))) + numpy.ones((4, 5)))
    assert_allclose(
        new_y.eval({y: y_val}),
        (y_val.dot(2 * numpy.ones((5, 2))) + numpy.ones((4, 2))).dot(
            2 * numpy.ones((2, 4))) + numpy.ones((4, 4))) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:26,代碼來源:test_bricks.py

示例9: test_compute_weights_with_zero_mask

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Constant [as 別名]
def test_compute_weights_with_zero_mask():
    state_dim = 2
    attended_dim = 3
    match_dim = 4
    attended_length = 5
    batch_size = 6

    attention = SequenceContentAttention(
        state_names=["states"], state_dims=[state_dim],
        attended_dim=attended_dim, match_dim=match_dim,
        weights_init=IsotropicGaussian(0.5),
        biases_init=Constant(0))
    attention.initialize()

    energies = tensor.as_tensor_variable(
        numpy.random.rand(attended_length, batch_size))
    mask = tensor.as_tensor_variable(
        numpy.zeros((attended_length, batch_size)))
    weights = attention.compute_weights(energies, mask).eval()
    assert numpy.all(numpy.isfinite(weights)) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:22,代碼來源:test_attention.py

示例10: test_constant

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Constant [as 別名]
def test_constant():
    def check_constant(const, shape, ground_truth):
        # rng unused, so pass None.
        init = Constant(const).generate(None, ground_truth.shape)
        assert ground_truth.dtype == theano.config.floatX
        assert ground_truth.shape == init.shape
        assert_equal(ground_truth, init)

    # Test scalar init.
    yield (check_constant, 5, (5, 5),
           5 * numpy.ones((5, 5), dtype=theano.config.floatX))
    # Test broadcasting.
    yield (check_constant, [1, 2, 3], (7, 3),
           numpy.array([[1, 2, 3]] * 7, dtype=theano.config.floatX))
    yield (check_constant, numpy.array([[1], [2], [3]]), (3, 2),
           numpy.array([[1, 1], [2, 2], [3, 3]], dtype=theano.config.floatX)) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:18,代碼來源:test_initialization.py

示例11: test_sparse

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Constant [as 別名]
def test_sparse():
    rng = numpy.random.RandomState(1)

    def check_sparse(rng, num_init, weights_init, sparse_init, shape, total):
        weights = Sparse(num_init=num_init, weights_init=weights_init,
                         sparse_init=sparse_init).generate(rng, shape)
        assert weights.shape == shape
        assert weights.dtype == theano.config.floatX
        if sparse_init is None:
            if isinstance(num_init, numbers.Integral):
                assert (numpy.count_nonzero(weights) <=
                        weights.size - num_init * weights.shape[0])
            else:
                assert (numpy.count_nonzero(weights) <=
                        weights.size - num_init * weights.shape[1])
        if total is not None:
            assert numpy.sum(weights) == total

    yield check_sparse, rng, 5, Constant(1.), None, (10, 10), None
    yield check_sparse, rng, 0.5, Constant(1.), None, (10, 10), None
    yield check_sparse, rng, 0.5, Constant(1.), Constant(1.), (10, 10), None
    yield check_sparse, rng, 3, Constant(1.), None, (10, 10), 30
    yield check_sparse, rng, 3, Constant(0.), Constant(1.), (10, 10), 70
    yield check_sparse, rng, 0.3, Constant(1.), None, (10, 10), 30
    yield check_sparse, rng, 0.3, Constant(0.), Constant(1.), (10, 10), 70 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:27,代碼來源:test_initialization.py

示例12: test_apply_batch_normalization_nested

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Constant [as 別名]
def test_apply_batch_normalization_nested():
    x = tensor.matrix()
    eps = 1e-8
    batch_dims = (3, 9)
    bn = BatchNormalization(input_dim=5, epsilon=eps)
    mlp = MLP([Sequence([bn.apply, Tanh().apply])], [9, 5],
              weights_init=Constant(0.4), biases_init=Constant(1))
    mlp.initialize()
    y = mlp.apply(x)
    cg = apply_batch_normalization(ComputationGraph([y]))
    y_bn = cg.outputs[0]
    rng = numpy.random.RandomState((2016, 1, 18))
    x_ = rng.uniform(size=batch_dims).astype(theano.config.floatX)
    y_ = y_bn.eval({x: x_})
    W_, b_ = map(lambda s: (getattr(mlp.linear_transformations[0], s)
                            .get_value(borrow=True)), ['W', 'b'])
    z_ = numpy.dot(x_, W_) + b_
    y_expected = numpy.tanh((z_ - z_.mean(axis=0)) /
                            numpy.sqrt(z_.var(axis=0) + eps))
    assert_allclose(y_, y_expected, rtol=1e-3) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:22,代碼來源:test_bn.py

示例13: initialize

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Constant [as 別名]
def initialize(to_init):
    for bricks in to_init:
        bricks.weights_init = initialization.Uniform(width=0.08)
        bricks.biases_init = initialization.Constant(0)
        bricks.initialize() 
開發者ID:johnarevalo,項目名稱:blocks-char-rnn,代碼行數:7,代碼來源:model.py

示例14: __init__

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Constant [as 別名]
def __init__(self, num_channels, num_filters, spatial_width, num_scales, filter_size, downsample_method='meanout', name=""):
        """
        A brick implementing a single layer in a multi-scale convolutional network.
        """
        super(MultiScaleConvolution, self).__init__()

        self.num_scales = num_scales
        self.filter_size = filter_size
        self.num_filters = num_filters
        self.spatial_width = spatial_width
        self.downsample_method = downsample_method
        self.children = []

        print "adding MultiScaleConvolution layer"

        # for scale in range(self.num_scales-1, -1, -1):
        for scale in range(self.num_scales):
            print "scale %d"%scale
            conv_layer = ConvolutionalActivation(activation=conv_nonlinearity.apply,
                filter_size=(filter_size,filter_size), num_filters=num_filters,
                num_channels=num_channels, image_size=(spatial_width/2**scale, spatial_width/2**scale),
                # assume images are spatially smooth -- in which case output magnitude scales with
                # # filter pixels rather than square root of # filter pixels, so initialize
                # accordingly.
                weights_init=IsotropicGaussian(std=np.sqrt(1./(num_filters))/filter_size**2),
                biases_init=Constant(0), border_mode='full', name=name+"scale%d"%scale)
            self.children.append(conv_layer) 
開發者ID:Sohl-Dickstein,項目名稱:Diffusion-Probabilistic-Models,代碼行數:29,代碼來源:regression.py

示例15: test_batch_normalization_inside_convolutional_sequence

# 需要導入模塊: from blocks import initialization [as 別名]
# 或者: from blocks.initialization import Constant [as 別名]
def test_batch_normalization_inside_convolutional_sequence():
    """Test that BN bricks work in ConvolutionalSequences."""
    conv_seq = ConvolutionalSequence(
        [Convolutional(filter_size=(3, 3), num_filters=4),
         BatchNormalization(broadcastable=(False, True, True)),
         AveragePooling(pooling_size=(2, 2)),
         BatchNormalization(broadcastable=(False, False, False)),
         MaxPooling(pooling_size=(2, 2), step=(1, 1))],
        weights_init=Constant(1.),
        biases_init=Constant(2.),
        image_size=(10, 8), num_channels=9)

    conv_seq_no_bn = ConvolutionalSequence(
        [Convolutional(filter_size=(3, 3), num_filters=4),
         AveragePooling(pooling_size=(2, 2)),
         MaxPooling(pooling_size=(2, 2), step=(1, 1))],
        weights_init=Constant(1.),
        biases_init=Constant(2.),
        image_size=(10, 8), num_channels=9)

    conv_seq.initialize()
    conv_seq_no_bn.initialize()
    rng = numpy.random.RandomState((2015, 12, 17))
    input_ = random_unif(rng, (2, 9, 10, 8))

    x = theano.tensor.tensor4()
    ybn = conv_seq.apply(x)
    y = conv_seq_no_bn.apply(x)
    yield (assert_equal, ybn.eval({x: input_}), y.eval({x: input_}))

    std = conv_seq.children[-2].population_stdev
    std.set_value(3 * std.get_value(borrow=True))
    yield (assert_equal, ybn.eval({x: input_}), y.eval({x: input_}) / 3.) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:35,代碼來源:test_bn.py


注:本文中的blocks.initialization.Constant方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。