當前位置: 首頁>>代碼示例>>Python>>正文


Python lookup.LookupTable方法代碼示例

本文整理匯總了Python中blocks.bricks.lookup.LookupTable方法的典型用法代碼示例。如果您正苦於以下問題:Python lookup.LookupTable方法的具體用法?Python lookup.LookupTable怎麽用?Python lookup.LookupTable使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在blocks.bricks.lookup的用法示例。


在下文中一共展示了lookup.LookupTable方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from blocks.bricks import lookup [as 別名]
# 或者: from blocks.bricks.lookup import LookupTable [as 別名]
def __init__(self, vocab_size, embedding_dim, state_dim, **kwargs):
        super(BidirectionalEncoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim

        self.lookup = LookupTable(name='embeddings')
        self.bidir = BidirectionalWMT15(
            GatedRecurrent(activation=Tanh(), dim=state_dim))
        self.fwd_fork = Fork(
            [name for name in self.bidir.prototype.apply.sequences
             if name != 'mask'], prototype=Linear(), name='fwd_fork')
        self.back_fork = Fork(
            [name for name in self.bidir.prototype.apply.sequences
             if name != 'mask'], prototype=Linear(), name='back_fork')

        self.children = [self.lookup, self.bidir,
                         self.fwd_fork, self.back_fork] 
開發者ID:aeloyq,項目名稱:MTBasedOnBlocks,代碼行數:20,代碼來源:model.py

示例2: __init__

# 需要導入模塊: from blocks.bricks import lookup [as 別名]
# 或者: from blocks.bricks.lookup import LookupTable [as 別名]
def __init__(self, vocab_size, embedding_dim, dgru_state_dim, dgru_depth, **kwargs):
        super(Decimator, self).__init__(**kwargs)

        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.dgru_state_dim = dgru_state_dim
        self.embedding_dim = embedding_dim
        self.lookup = LookupTable(name='embeddings')
        self.dgru_depth = dgru_depth
        # representation
        self.dgru = RecurrentStack([DGRU(activation=Tanh(), dim=self.dgru_state_dim) for _ in range(dgru_depth)],
                                   skip_connections=True)
        # importance of this representation
        self.bidir_w = Bidirectional(
            RecurrentWithFork(DGRU(activation=Tanh(), dim=self.dgru_state_dim // 2), self.embedding_dim,
                              name='src_word_with_fork'),
            name='bidir_src_word_encoder')

        self.gru_fork = Fork([name for name in self.dgru.apply.sequences
                              if name != 'mask'], prototype=Linear(), name='gru_fork')
        # map to a energy scalar
        self.wl = Linear(input_dim=dgru_state_dim, output_dim=1)

        self.children = [self.lookup, self.dgru, self.gru_fork, self.bidir_w, self.wl] 
開發者ID:SwordYork,項目名稱:DCNMT,代碼行數:26,代碼來源:model.py

示例3: __init__

# 需要導入模塊: from blocks.bricks import lookup [as 別名]
# 或者: from blocks.bricks.lookup import LookupTable [as 別名]
def __init__(self, embedding_dim, state_dim, **kwargs):
        super(BidirectionalEncoder, self).__init__(**kwargs)
        # self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim

        # self.lookup = LookupTable(name='embeddings')
        self.bidir = BidirectionalWMT15(
            GatedRecurrent(activation=Tanh(), dim=state_dim))
        self.fwd_fork = Fork(
            [name for name in self.bidir.prototype.apply.sequences
             if name != 'mask'], prototype=Linear(), name='fwd_fork')
        self.back_fork = Fork(
            [name for name in self.bidir.prototype.apply.sequences
             if name != 'mask'], prototype=Linear(), name='back_fork')

        self.children = [self.bidir,
                         self.fwd_fork, self.back_fork] 
開發者ID:akshaykgupta,項目名稱:im2latex,代碼行數:20,代碼來源:model.py

示例4: __init__

# 需要導入模塊: from blocks.bricks import lookup [as 別名]
# 或者: from blocks.bricks.lookup import LookupTable [as 別名]
def __init__(self, 
                 vocab_size, 
                 embedding_dim, 
                 n_layers, 
                 skip_connections, 
                 state_dim, 
                 **kwargs):
        """Sole constructor.
        
        Args:
            vocab_size (int): Source vocabulary size
            embedding_dim (int): Dimension of the embedding layer
            n_layers (int): Number of layers. Layers share the same
                            weight matrices.
            skip_connections (bool): Skip connections connect the
                                     source word embeddings directly 
                                     with deeper layers to propagate 
                                     the gradient more efficiently
            state_dim (int): Number of hidden units in the recurrent
                             layers.
        """
        super(BidirectionalEncoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.n_layers = n_layers
        self.state_dim = state_dim
        self.skip_connections = skip_connections

        self.lookup = LookupTable(name='embeddings')
        if self.n_layers >= 1:
            self.bidir = BidirectionalWMT15(
                GatedRecurrent(activation=Tanh(), dim=state_dim))
            self.fwd_fork = Fork(
                [name for name in self.bidir.prototype.apply.sequences
                 if name != 'mask'], prototype=Linear(), name='fwd_fork')
            self.back_fork = Fork(
                [name for name in self.bidir.prototype.apply.sequences
                 if name != 'mask'], prototype=Linear(), name='back_fork')
            self.children = [self.lookup, self.bidir,
                             self.fwd_fork, self.back_fork]
            if self.n_layers > 1: # Deep encoder
                self.mid_fwd_fork = Fork(
                    [name for name in self.bidir.prototype.apply.sequences
                     if name != 'mask'], prototype=Linear(), name='mid_fwd_fork')
                self.mid_back_fork = Fork(
                    [name for name in self.bidir.prototype.apply.sequences
                     if name != 'mask'], prototype=Linear(), name='mid_back_fork')
                self.children.append(self.mid_fwd_fork)
                self.children.append(self.mid_back_fork)
        elif self.n_layers == 0:
            self.embedding_dim = state_dim*2
            self.children = [self.lookup]
        else:
            logging.fatal("Number of encoder layers must be non-negative") 
開發者ID:ucam-smt,項目名稱:sgnmt,代碼行數:56,代碼來源:encoder.py

示例5: __init__

# 需要導入模塊: from blocks.bricks import lookup [as 別名]
# 或者: from blocks.bricks.lookup import LookupTable [as 別名]
def __init__(self, num_input_words, emb_dim, dim, vocab, lookup=None,
                 fork_and_rnn=None, cache=None, **kwargs):

        self._vocab = vocab
        self._cache = cache
        children = []
        if num_input_words > 0:
            logger.info("Restricting def vocab to " + str(num_input_words))
            self._num_input_words = num_input_words
        else:
            self._num_input_words = vocab.size()


        if lookup is None:
            self._def_lookup = LookupTable(self._num_input_words, emb_dim, name='def_lookup')
        else:
            self._def_lookup = lookup

        if fork_and_rnn is None:
            self._def_fork = Linear(emb_dim, 4 * dim, name='def_fork')
            self._def_rnn = LSTM(dim, name='def_rnn')
        else:
            self._def_fork, self._def_rnn = fork_and_rnn

        children.extend([self._def_lookup, self._def_fork, self._def_rnn])

        super(LSTMReadDefinitions, self).__init__(children=children, **kwargs) 
開發者ID:tombosc,項目名稱:dict_based_learning,代碼行數:29,代碼來源:lookup.py

示例6: __init__

# 需要導入模塊: from blocks.bricks import lookup [as 別名]
# 或者: from blocks.bricks.lookup import LookupTable [as 別名]
def __init__(self, emb_dim, dim, num_input_words, 
                 num_output_words, vocab, 
                 **kwargs):
        if emb_dim == 0:
            emb_dim = dim
        if num_input_words == 0:
            num_input_words = vocab.size()
        if num_output_words == 0:
            num_output_words = vocab.size()

        self._num_input_words = num_input_words
        self._num_output_words = num_output_words
        self._vocab = vocab

        self._word_to_id = WordToIdOp(self._vocab)

        children = []

        self._main_lookup = LookupTable(self._num_input_words, emb_dim, name='main_lookup')
        self._encoder_fork = Linear(emb_dim, 4 * dim, name='encoder_fork')
        self._encoder_rnn = LSTM(dim, name='encoder_rnn')
        self._decoder_fork = Linear(emb_dim, 4 * dim, name='decoder_fork')
        self._decoder_rnn = LSTM(dim, name='decoder_rnn')
        children.extend([self._main_lookup,
                         self._encoder_fork, self._encoder_rnn,
                         self._decoder_fork, self._decoder_rnn])
        self._pre_softmax = Linear(dim, self._num_output_words)
        self._softmax = NDimensionalSoftmax()
        children.extend([self._pre_softmax, self._softmax])

        super(LanguageModel, self).__init__(children=children, **kwargs) 
開發者ID:tombosc,項目名稱:dict_based_learning,代碼行數:33,代碼來源:seq2seq.py

示例7: __init__

# 需要導入模塊: from blocks.bricks import lookup [as 別名]
# 或者: from blocks.bricks.lookup import LookupTable [as 別名]
def __init__(
            self,
            encoder_type,
            num_characters,
            input_dim,
            encoder_dim,
            **kwargs):
        assert encoder_type in [None, 'bidirectional']
        self.encoder_type = encoder_type
        super(Encoder, self).__init__(**kwargs)

        self.children = []

        if encoder_type in ['lookup', 'bidirectional']:
            self.embed_label = LookupTable(
                num_characters,
                input_dim,
                name='embed_label')
            self.children += [
                self.embed_label]
        else:
            # If there is no encoder.
            assert num_characters == input_dim

        if encoder_type == 'bidirectional':
            transition = RecurrentWithFork(
                GatedRecurrent(dim=encoder_dim).apply,
                input_dim, name='encoder_transition')
            self.encoder = Bidirectional(transition, name='encoder')
            self.children.append(self.encoder) 
開發者ID:fizerkhan,項目名稱:mimicry.ai,代碼行數:32,代碼來源:model.py


注:本文中的blocks.bricks.lookup.LookupTable方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。