本文整理匯總了Python中blocks.bricks.Linear方法的典型用法代碼示例。如果您正苦於以下問題:Python bricks.Linear方法的具體用法?Python bricks.Linear怎麽用?Python bricks.Linear使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類blocks.bricks
的用法示例。
在下文中一共展示了bricks.Linear方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from blocks import bricks [as 別名]
# 或者: from blocks.bricks import Linear [as 別名]
def __init__(self, image_feature_dim, embedding_dim, **kwargs):
super(Encoder, self).__init__(**kwargs)
self.image_embedding = Linear(
input_dim=image_feature_dim
, output_dim=embedding_dim
, name="image_embedding"
)
self.to_inputs = Linear(
input_dim=embedding_dim
, output_dim=embedding_dim*4 # times 4 cuz vstack(input, forget, cell, hidden)
, name="to_inputs"
)
self.transition = LSTM(
dim=embedding_dim, name="transition")
self.children = [ self.image_embedding
, self.to_inputs
, self.transition
]
示例2: rnn_layer
# 需要導入模塊: from blocks import bricks [as 別名]
# 或者: from blocks.bricks import Linear [as 別名]
def rnn_layer(dim, h, n):
linear = Linear(input_dim=dim, output_dim=dim, name='linear' + str(n))
rnn = SimpleRecurrent(dim=dim, activation=Tanh(), name='rnn' + str(n))
initialize([linear, rnn])
return rnn.apply(linear.apply(h))
示例3: softmax_layer
# 需要導入模塊: from blocks import bricks [as 別名]
# 或者: from blocks.bricks import Linear [as 別名]
def softmax_layer(h, y, vocab_size, hidden_size):
hidden_to_output = Linear(name='hidden_to_output', input_dim=hidden_size,
output_dim=vocab_size)
initialize([hidden_to_output])
linear_output = hidden_to_output.apply(h)
linear_output.name = 'linear_output'
softmax = NDimensionalSoftmax()
y_hat = softmax.apply(linear_output, extra_ndim=1)
y_hat.name = 'y_hat'
cost = softmax.categorical_cross_entropy(
y, linear_output, extra_ndim=1).mean()
cost.name = 'cost'
return y_hat, cost
示例4: lstm_layer
# 需要導入模塊: from blocks import bricks [as 別名]
# 或者: from blocks.bricks import Linear [as 別名]
def lstm_layer(dim, h, n):
linear = Linear(input_dim=dim, output_dim=dim * 4, name='linear' + str(n))
lstm = LSTM(dim=dim, name='lstm' + str(n))
initialize([linear, lstm])
return lstm.apply(linear.apply(h))
示例5: __init__
# 需要導入模塊: from blocks import bricks [as 別名]
# 或者: from blocks.bricks import Linear [as 別名]
def __init__(self, output_names, input_dim, prototype=None, **kwargs):
if not prototype:
prototype = Linear()
self.output_names = output_names
self.input_dim = input_dim
kwargs.setdefault('child_prefix', 'fork')
super(Fork, self).__init__(output_names, prototype=prototype,
**kwargs)
self.input_dims = None
示例6: test_variable_filter_roles_error
# 需要導入模塊: from blocks import bricks [as 別名]
# 或者: from blocks.bricks import Linear [as 別名]
def test_variable_filter_roles_error():
# Creating computation graph
brick1 = Linear(input_dim=2, output_dim=2, name='linear1')
x = tensor.vector()
h1 = brick1.apply(x)
cg = ComputationGraph(h1)
# testing role error
VariableFilter(roles=PARAMETER)(cg.variables)
示例7: test_renamer
# 需要導入模塊: from blocks import bricks [as 別名]
# 或者: from blocks.bricks import Linear [as 別名]
def test_renamer():
x = tensor.matrix('features')
layer = Linear(10, 10)
y = layer.apply(x)
named = shared(name='named', value=numpy.zeros(2))
tag_named = shared(value=numpy.zeros(2))
tag_named.tag.name = 'tag_named'
unnamed = shared(value=numpy.zeros(2))
variables = [layer.W, named, tag_named, unnamed, unnamed, unnamed]
renamer = _Renamer()
names = [renamer(n) for n in variables]
true_names = ['|linear.W', 'named', 'tag_named', 'parameter',
'parameter_2', 'parameter_3']
assert set(names) == set(true_names)
示例8: test_linearlike_subclass_initialize_works_overridden_w
# 需要導入模塊: from blocks import bricks [as 別名]
# 或者: from blocks.bricks import Linear [as 別名]
def test_linearlike_subclass_initialize_works_overridden_w():
class NotQuiteLinear(Linear):
@property
def W(self):
W = super(NotQuiteLinear, self).W
return W / tensor.sqrt((W ** 2).sum(axis=0))
brick = NotQuiteLinear(5, 10, weights_init=IsotropicGaussian(0.02),
biases_init=Constant(1))
brick.initialize()
assert not numpy.isnan(brick.parameters[0].get_value()).any()
numpy.testing.assert_allclose((brick.W ** 2).sum(axis=0).eval(), 1,
rtol=1e-6)
示例9: make_bidir_lstm_stack
# 需要導入模塊: from blocks import bricks [as 別名]
# 或者: from blocks.bricks import Linear [as 別名]
def make_bidir_lstm_stack(seq, seq_dim, mask, sizes, skip=True, name=''):
bricks = []
curr_dim = [seq_dim]
curr_hidden = [seq]
hidden_list = []
for k, dim in enumerate(sizes):
fwd_lstm_ins = [Linear(input_dim=d, output_dim=4*dim, name='%s_fwd_lstm_in_%d_%d'%(name,k,l)) for l, d in enumerate(curr_dim)]
fwd_lstm = LSTM(dim=dim, activation=Tanh(), name='%s_fwd_lstm_%d'%(name,k))
bwd_lstm_ins = [Linear(input_dim=d, output_dim=4*dim, name='%s_bwd_lstm_in_%d_%d'%(name,k,l)) for l, d in enumerate(curr_dim)]
bwd_lstm = LSTM(dim=dim, activation=Tanh(), name='%s_bwd_lstm_%d'%(name,k))
bricks = bricks + [fwd_lstm, bwd_lstm] + fwd_lstm_ins + bwd_lstm_ins
fwd_tmp = sum(x.apply(v) for x, v in zip(fwd_lstm_ins, curr_hidden))
bwd_tmp = sum(x.apply(v) for x, v in zip(bwd_lstm_ins, curr_hidden))
fwd_hidden, _ = fwd_lstm.apply(fwd_tmp, mask=mask)
bwd_hidden, _ = bwd_lstm.apply(bwd_tmp[::-1], mask=mask[::-1])
hidden_list = hidden_list + [fwd_hidden, bwd_hidden]
if skip:
curr_hidden = [seq, fwd_hidden, bwd_hidden[::-1]]
curr_dim = [seq_dim, dim, dim]
else:
curr_hidden = [fwd_hidden, bwd_hidden[::-1]]
curr_dim = [dim, dim]
return bricks, hidden_list
開發者ID:thomasmesnard,項目名稱:DeepMind-Teaching-Machines-to-Read-and-Comprehend,代碼行數:31,代碼來源:attentive_reader.py
示例10: __init__
# 需要導入模塊: from blocks import bricks [as 別名]
# 或者: from blocks.bricks import Linear [as 別名]
def __init__(self, match_dim, conv_n, conv_num_filters=1,
state_transformer=None,
attended_transformer=None, energy_computer=None,
prior=None, energy_normalizer=None, **kwargs):
super(SequenceContentAndConvAttention, self).__init__(**kwargs)
if not state_transformer:
state_transformer = Linear(use_bias=False)
self.match_dim = match_dim
self.state_transformer = state_transformer
self.state_transformers = Parallel(input_names=self.state_names,
prototype=state_transformer,
name="state_trans")
if not attended_transformer:
# Only this contributor to the match vector
# is allowed to have biases
attended_transformer = Linear(name="preprocess")
if not energy_normalizer:
energy_normalizer = 'softmax'
self.energy_normalizer = energy_normalizer
if not energy_computer:
energy_computer = ShallowEnergyComputer(
name="energy_comp",
use_bias=self.energy_normalizer != 'softmax')
self.filter_handler = Linear(name="handler", use_bias=False)
self.attended_transformer = attended_transformer
self.energy_computer = energy_computer
if not prior:
prior = dict(type='expanding', initial_begin=0, initial_end=10000,
min_speed=0, max_speed=0)
self.prior = prior
self.conv_n = conv_n
self.conv_num_filters = conv_num_filters
self.conv = Conv1D(conv_num_filters, 2 * conv_n + 1)
self.children = [self.state_transformers, self.attended_transformer,
self.energy_computer, self.filter_handler, self.conv]