本文整理匯總了Python中blocks.bricks.Identity方法的典型用法代碼示例。如果您正苦於以下問題:Python bricks.Identity方法的具體用法?Python bricks.Identity怎麽用?Python bricks.Identity使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類blocks.bricks
的用法示例。
在下文中一共展示了bricks.Identity方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from blocks import bricks [as 別名]
# 或者: from blocks.bricks import Identity [as 別名]
def __init__(self, n_layers_conv, n_layers_dense_lower, n_layers_dense_upper,
n_hidden_conv, n_hidden_dense_lower, n_hidden_dense_lower_output, n_hidden_dense_upper,
spatial_width, n_colors, n_scales, n_temporal_basis):
"""
The multilayer perceptron, that provides temporal weighting coefficients for mu and sigma
images. This consists of a lower segment with a convolutional MLP, and optionally with a
dense MLP in parallel. The upper segment then consists of a per-pixel dense MLP
(convolutional MLP with 1x1 kernel).
"""
super(MLP_conv_dense, self).__init__()
self.n_colors = n_colors
self.spatial_width = spatial_width
self.n_hidden_dense_lower = n_hidden_dense_lower
self.n_hidden_dense_lower_output = n_hidden_dense_lower_output
self.n_hidden_conv = n_hidden_conv
## the lower layers
self.mlp_conv = MultiLayerConvolution(n_layers_conv, n_hidden_conv, spatial_width, n_colors, n_scales)
self.children = [self.mlp_conv]
if n_hidden_dense_lower > 0 and n_layers_dense_lower > 0:
n_input = n_colors*spatial_width**2
n_output = n_hidden_dense_lower_output*spatial_width**2
self.mlp_dense_lower = MLP([dense_nonlinearity] * n_layers_conv,
[n_input] + [n_hidden_dense_lower] * (n_layers_conv-1) + [n_output],
name='MLP dense lower', weights_init=Orthogonal(), biases_init=Constant(0))
self.children.append(self.mlp_dense_lower)
else:
n_hidden_dense_lower_output = 0
## the upper layers (applied to each pixel independently)
n_output = n_colors*n_temporal_basis*2 # "*2" for both mu and sigma
self.mlp_dense_upper = MLP([dense_nonlinearity] * (n_layers_dense_upper-1) + [Identity()],
[n_hidden_conv+n_hidden_dense_lower_output] +
[n_hidden_dense_upper] * (n_layers_dense_upper-1) + [n_output],
name='MLP dense upper', weights_init=Orthogonal(), biases_init=Constant(0))
self.children.append(self.mlp_dense_upper)
示例2: setUp
# 需要導入模塊: from blocks import bricks [as 別名]
# 或者: from blocks.bricks import Identity [as 別名]
def setUp(self):
self.mlp = MLP([Sequence([Identity(name='id1').apply,
Tanh(name='tanh1').apply],
name='sequence1'),
Sequence([Logistic(name='logistic1').apply,
Identity(name='id2').apply,
Tanh(name='tanh2').apply],
name='sequence2'),
Logistic(name='logistic2'),
Sequence([Sequence([Logistic(name='logistic3').apply],
name='sequence4').apply],
name='sequence3')],
[10, 5, 9, 5, 9])
示例3: test_find_second_and_third_level
# 需要導入模塊: from blocks import bricks [as 別名]
# 或者: from blocks.bricks import Identity [as 別名]
def test_find_second_and_third_level(self):
found = set(find_bricks([self.mlp], lambda x: isinstance(x, Identity)))
assert len(found) == 2
assert self.mlp.activations[0].children[0] in found
assert self.mlp.activations[1].children[1] in found
示例4: test_snapshot
# 需要導入模塊: from blocks import bricks [as 別名]
# 或者: from blocks.bricks import Identity [as 別名]
def test_snapshot():
x = tensor.matrix('x')
linear = MLP([Identity(), Identity()], [10, 10, 10],
weights_init=Constant(1), biases_init=Constant(2))
linear.initialize()
y = linear.apply(x)
cg = ComputationGraph(y)
snapshot = cg.get_snapshot(dict(x=numpy.zeros((1, 10),
dtype=theano.config.floatX)))
assert len(snapshot) == 14
示例5: main
# 需要導入模塊: from blocks import bricks [as 別名]
# 或者: from blocks.bricks import Identity [as 別名]
def main(save_to, num_batches):
mlp = MLP([Tanh(), Identity()], [1, 10, 1],
weights_init=IsotropicGaussian(0.01),
biases_init=Constant(0), seed=1)
mlp.initialize()
x = tensor.vector('numbers')
y = tensor.vector('roots')
cost = SquaredError().apply(y[:, None], mlp.apply(x[:, None]))
cost.name = "cost"
main_loop = MainLoop(
GradientDescent(
cost=cost, parameters=ComputationGraph(cost).parameters,
step_rule=Scale(learning_rate=0.001)),
get_data_stream(range(100)),
model=Model(cost),
extensions=[
Timing(),
FinishAfter(after_n_batches=num_batches),
DataStreamMonitoring(
[cost], get_data_stream(range(100, 200)),
prefix="test"),
TrainingDataMonitoring([cost], after_epoch=True),
Checkpoint(save_to),
Printing()])
main_loop.run()
return main_loop