當前位置: 首頁>>代碼示例>>Python>>正文


Python biom.load_table方法代碼示例

本文整理匯總了Python中biom.load_table方法的典型用法代碼示例。如果您正苦於以下問題:Python biom.load_table方法的具體用法?Python biom.load_table怎麽用?Python biom.load_table使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在biom的用法示例。


在下文中一共展示了biom.load_table方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_create_otu_table

# 需要導入模塊: import biom [as 別名]
# 或者: from biom import load_table [as 別名]
def test_create_otu_table(self):
        fp_table = join(self.output_dir, 'all.biom')
        create_otu_table(
            fp_table,
            [(join(self.data_dir, 'usecase_mixedchars',
                   ('1.SKB7.640196.fastq.trim.derep.'
                    'no_artifacts.msa.deblur.no_chimeras')), '1.SKB7.640196'),
             (join(self.data_dir, 'usecase_mixedchars',
                   ('1.SKB8.640193.fastq.trim.derep.'
                    'no_artifacts.deblur.no_chimeras')), '1.SKB8.640193')],
            outputfasta_fp=join(self.output_dir, 'all.seqs'), minreads=0)
        table = load_table(fp_table)

        # should produce a table with two samples and two features
        self.assertEqual(table.shape, (2, 2))

        # assert that counts from different case entries are collapsed
        self.assertTrue(list(table.to_dataframe().to_dense().loc[
            ('TACGGGGGGGGTTAGCGTTATTCAATGATATTTGGCGTAAAGTGCATGTAGATGGTGTTAC'
             'AAGTTAAAAAAATAAAAACTAAGGACAAATCTTTTCGTT'), :].values) == [60, 0]) 
開發者ID:biocore,項目名稱:deblur,代碼行數:22,代碼來源:test_mixedcase.py

示例2: read_taxonomic_profile

# 需要導入模塊: import biom [as 別名]
# 或者: from biom import load_table [as 別名]
def read_taxonomic_profile(biom_profile, config, no_samples = None):
    table = biom.load_table(biom_profile)
    ids = table.ids(axis="observation")
    samples = table.ids()

    if no_samples is None:
        no_samples = len(samples)

    if no_samples is not None and no_samples != len(samples) and no_samples != 1:
        _log.warning("Number of samples (%s) does not match number of samples in biom file (%s)" % (no_samples, len(samples)))
        if no_samples > len(samples):
            no_samples = len(samples)
        _log.warning("Using the first %s samples" % no_samples)

    config.set("Main", "number_of_samples", str(no_samples))
    profile = {}
    for otu in ids:
        lineage = table.metadata(otu,axis="observation")["taxonomy"]
        try:
            lineage = lineage.split(";") # if no spaces
        except AttributeError:
            pass
        abundances = []
        for sample in samples[:no_samples]:
            abundances.append(table.get_value_by_ids(otu,sample))
        profile[otu] = (lineage, abundances)
    
    return profile 
開發者ID:CAMI-challenge,項目名稱:CAMISIM,代碼行數:30,代碼來源:get_genomes.py

示例3: setUp

# 需要導入模塊: import biom [as 別名]
# 或者: from biom import load_table [as 別名]
def setUp(self):
        self.microbes = load_table(get_data_path('soil_microbes.biom'))
        self.metabolites = load_table(get_data_path('soil_metabolites.biom'))
        X = self.microbes.to_dataframe().T
        Y = self.metabolites.to_dataframe().T
        X = X.loc[Y.index]
        self.trainX = X.iloc[:-2]
        self.trainY = Y.iloc[:-2]
        self.testX = X.iloc[-2:]
        self.testY = Y.iloc[-2:] 
開發者ID:biocore,項目名稱:mmvec,代碼行數:12,代碼來源:test_multimodal.py

示例4: test_featureMatch1

# 需要導入模塊: import biom [as 別名]
# 或者: from biom import load_table [as 別名]
def test_featureMatch1(self):
        goodcsi = self.goodcsi.view(CSIDirFmt)
        tablefp = collate_fingerprint(goodcsi)
        features = load_table(self.featureTable)
        allfeatrs = set(features.ids(axis='observation'))
        fpfeatrs = set(tablefp.index)
        self.assertEqual(fpfeatrs <= allfeatrs, True) 
開發者ID:biocore,項目名稱:q2-qemistree,代碼行數:9,代碼來源:test_process_fingerprint.py

示例5: setUp

# 需要導入模塊: import biom [as 別名]
# 或者: from biom import load_table [as 別名]
def setUp(self):
        data_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                                'data')
        fp = os.path.join(data_dir, 'feature_data_itol.txt')
        self.feature_data = pd.read_csv(fp, sep='\t')
        fp = os.path.join(data_dir, 'grouped_feature_table.biom')
        self.grouped_table = biom.load_table(fp) 
開發者ID:biocore,項目名稱:q2-qemistree,代碼行數:9,代碼來源:test_plot.py

示例6: setUp

# 需要導入模塊: import biom [as 別名]
# 或者: from biom import load_table [as 別名]
def setUp(self):
        THIS_DIR = os.path.dirname(os.path.abspath(__file__))
        table = pd.DataFrame()
        self.emptyfps = table
        table = pd.DataFrame(index=['a', 'b', 'c'], data=['a', 'b', 'c'])
        self.wrongtips = table
        goodtable = os.path.join(THIS_DIR, 'data/features_formated.biom')
        self.features = load_table(goodtable)
        goodsmiles = os.path.join(THIS_DIR, 'data/features_smiles.txt')
        self.smiles = pd.read_csv(goodsmiles, dtype=str, sep='\t')
        self.smiles = self.smiles.set_index('#featureID')
        goodcsi = os.path.join(THIS_DIR, 'data/goodcsi')
        self.tablefp = collate_fingerprint(goodcsi) 
開發者ID:biocore,項目名稱:q2-qemistree,代碼行數:15,代碼來源:test_match_table.py

示例7: setUp

# 需要導入模塊: import biom [as 別名]
# 或者: from biom import load_table [as 別名]
def setUp(self):
        THIS_DIR = os.path.dirname(os.path.abspath(__file__))
        tablefp = Table({}, [], [])
        self.emptyfeatures = tablefp
        goodtable = os.path.join(THIS_DIR, 'data/features_formated.biom')
        self.features = load_table(goodtable)
        goodtable = os.path.join(THIS_DIR, 'data/features2_formated.biom')
        ms2_match = os.path.join(THIS_DIR, 'data/ms2_match.txt')
        self.ms2_match = pd.read_csv(ms2_match, sep='\t',
                                     index_col='cluster index')
        self.features2 = load_table(goodtable)
        self.goodcsi = qiime2.Artifact.load(os.path.join(THIS_DIR,
                                                         'data/csiFolder.qza'))
        self.goodcsi2 = qiime2.Artifact.load(os.path.join(
                                             THIS_DIR, 'data/csiFolder2.qza')) 
開發者ID:biocore,項目名稱:q2-qemistree,代碼行數:17,代碼來源:test_make_hierarchy.py

示例8: test_norm_by_marker_copies

# 需要導入模塊: import biom [as 別名]
# 或者: from biom import load_table [as 別名]
def test_norm_by_marker_copies(self):
        '''Test that expected normalized sequence abundance table generated.'''

        seqtab_in = biom.load_table(seqtab_biom).to_dataframe(dense=True)

        # Get output index labels in same order as expected.
        seqtab_in = seqtab_in.reindex(exp_norm_in.index)

        test_norm = norm_by_marker_copies(input_seq_counts=seqtab_in,
                                          input_marker_num=marker_predict_in,
                                          norm_filename=None)

        # Test whether normalized table matches expected table.
        pd.testing.assert_frame_equal(test_norm, exp_norm_in, check_like=True) 
開發者ID:picrust,項目名稱:picrust2,代碼行數:16,代碼來源:test_metagenome_pipeline.py

示例9: test_rare_4_reads

# 需要導入模塊: import biom [as 別名]
# 或者: from biom import load_table [as 別名]
def test_rare_4_reads(self):
        '''Check that correct sequences are identified as rare when a cut-off
        of 4 reads is used.'''

        seqtab_in = biom.load_table(seqtab_biom).to_dataframe(dense=True)

        rare_seqs = id_rare_seqs(seqtab_in, 4, 1)

        self.assertSetEqual(set(rare_seqs), set(["2558860574", "extra"])) 
開發者ID:picrust,項目名稱:picrust2,代碼行數:11,代碼來源:test_metagenome_pipeline.py

示例10: test_rare_2_samp

# 需要導入模塊: import biom [as 別名]
# 或者: from biom import load_table [as 別名]
def test_rare_2_samp(self):
        '''Check that correct sequences are identified as rare when a cut-off
        of 2 samples is used.'''

        seqtab_in = biom.load_table(seqtab_biom).to_dataframe(dense=True)

        rare_seqs = id_rare_seqs(seqtab_in, 1, 2)

        self.assertSetEqual(set(rare_seqs), set(["2558860574", "2571042244"])) 
開發者ID:picrust,項目名稱:picrust2,代碼行數:11,代碼來源:test_metagenome_pipeline.py

示例11: test_pandas2biom

# 需要導入模塊: import biom [as 別名]
# 或者: from biom import load_table [as 別名]
def test_pandas2biom(self):
        fh, filename = mkstemp()
        p = pd.read_csv(get_data_path('float.tsv'), sep='\t', index_col=0)
        with self.assertRaisesRegex(IOError, 'Unable to create file'):
            pandas2biom('/dev/', p)
        pandas2biom(filename, p)
        b = biom.load_table(filename)
        self.assertCountEqual(b.ids(), p.columns)
        self.assertCountEqual(b.ids(axis='observation'), p.index) 
開發者ID:biocore,項目名稱:oecophylla,代碼行數:11,代碼來源:test_parser.py

示例12: validate_results

# 需要導入模塊: import biom [as 別名]
# 或者: from biom import load_table [as 別名]
def validate_results(self, table_name, orig_fasta_name):
        res_table = load_table(table_name)

        res_seqs = list(res_table.ids(axis='observation'))
        exp_seqs = [item[1] for item in sequence_generator(orig_fasta_name)]
        exp_seqs = list(map(lambda x: x.upper()[:self.trim_length], exp_seqs))
        self.assertListEqual(res_seqs, exp_seqs) 
開發者ID:biocore,項目名稱:deblur,代碼行數:9,代碼來源:test_script.py

示例13: test_filter_minreads_samples_from_table

# 需要導入模塊: import biom [as 別名]
# 或者: from biom import load_table [as 別名]
def test_filter_minreads_samples_from_table(self):
        """ Test filter_minreads_samples_from_table() function
        for removal of samples with small number of reads
        using the s4 dataset biom table
        """
        input_biom_file = join(self.test_data_dir, 'final.s4.biom')
        table = load_table(input_biom_file)

        # test basic filtering with 0 reads does not remove ok sample
        new_table = filter_minreads_samples_from_table(table)
        self.assertEqual(new_table.shape[1], 1)

        # test basic filtering with enough reads removes the sample
        # and also inplace=False works
        new_table = filter_minreads_samples_from_table(table,
                                                       minreads=182,
                                                       inplace=False)
        self.assertEqual(new_table.shape[1], 0)
        self.assertEqual(table.shape[1], 1)

        # test basic filtering with enough reads removes the sample
        # and also inplace=True works
        filter_minreads_samples_from_table(table,
                                           minreads=200,
                                           inplace=True)
        self.assertEqual(table.shape[1], 0) 
開發者ID:biocore,項目名稱:deblur,代碼行數:28,代碼來源:test_workflow.py

示例14: gibbs

# 需要導入模塊: import biom [as 別名]
# 或者: from biom import load_table [as 別名]
def gibbs(table_fp: Table,
          mapping_fp: pd.DataFrame,
          output_dir: str,
          loo: bool,
          jobs: int,
          alpha1: float,
          alpha2: float,
          beta: float,
          source_rarefaction_depth: int,
          sink_rarefaction_depth: int,
          restarts: int,
          draws_per_restart: int,
          burnin: int,
          delay: int,
          per_sink_feature_assignments: bool,
          sample_with_replacement: bool,
          source_sink_column: str,
          source_column_value: str,
          sink_column_value: str,
          source_category_column: str):
    '''Gibb's sampler for Bayesian estimation of microbial sample sources.

    For details, see the project README file.
    '''
    # Create results directory. Click has already checked if it exists, and
    # failed if so.
    os.mkdir(output_dir)

    # Load the metadata file and feature table.
    sample_metadata = parse_sample_metadata(open(mapping_fp, 'U'))
    feature_table = biom_to_df(load_table(table_fp))

    # run the gibbs sampler helper function (same used for q2)
    results = gibbs_helper(feature_table, sample_metadata, loo, jobs,
                           alpha1, alpha2, beta, source_rarefaction_depth,
                           sink_rarefaction_depth, restarts, draws_per_restart,
                           burnin, delay, per_sink_feature_assignments,
                           sample_with_replacement, source_sink_column,
                           source_column_value, sink_column_value,
                           source_category_column)
    # import the results (will change based on per_sink_feature_assignments)
    if len(results) == 3:
        mpm, mps, fas = results
        # write the feature tables from fas
        for sink, fa in zip(mpm.columns, fas):
            fa.to_csv(os.path.join(output_dir, sink + '.feature_table.txt'),
                      sep='\t')
    else:
        # get the results (without fas)
        mpm, mps = results

    # Write results.
    mpm.to_csv(os.path.join(output_dir, 'mixing_proportions.txt'), sep='\t')
    mps.to_csv(os.path.join(output_dir, 'mixing_proportions_stds.txt'),
               sep='\t')

    # Plot contributions.
    fig, ax = plot_heatmap(mpm.T)
    fig.savefig(os.path.join(output_dir, 'mixing_proportions.pdf'), dpi=300) 
開發者ID:biota,項目名稱:sourcetracker2,代碼行數:61,代碼來源:gibbs.py

示例15: read_seqabun

# 需要導入模塊: import biom [as 別名]
# 或者: from biom import load_table [as 別名]
def read_seqabun(infile):
    '''Will read in sequence abundance table in either TSV, BIOM, or mothur
    shared format.'''

    # First check extension of input file. If extension is "biom" then read in
    # as BIOM table and return. This is expected to be the most common input.
    in_name, in_ext = splitext(infile)
    if in_ext == ".biom":
        input_seqabun = biom.load_table(infile).to_dataframe(dense=True)
        input_seqabun.index.astype('str', copy=False)
        return(input_seqabun)

    # Next check if input file is a mothur shared file or not by read in first
    # row only.
    mothur_format = False
    try:
        in_test = pd.read_csv(filepath_or_buffer=infile, sep="\t", nrows=1)
        in_test_col = list(in_test.columns.values)
        if len(in_test_col) >= 4 and (in_test_col[0] == "label" and \
                                      in_test_col[1] == "Group" and \
                                      in_test_col[2] == "numOtus"):
            mothur_format = True
    except Exception:
        pass

    # If identified to be mothur format then remove extra columns, set "Group"
    # to be index (i.e. row) names and then transpose.
    if mothur_format:
        input_seqabun = pd.read_csv(filepath_or_buffer=infile, sep="\t",
                                    dtype={'Group': str}, low_memory=False)
        input_seqabun.drop(labels=["label", "numOtus"], axis=1, inplace=True)
        input_seqabun.set_index(keys="Group", drop=True, inplace=True)
        input_seqabun.index.name = None
        input_seqabun = input_seqabun.transpose()
        input_seqabun.index.astype('str', copy=False)
        return(input_seqabun)
    else:
        first_col = str(pd.read_csv(infile, sep="\t", nrows=0).columns[0])
        input_seqabun = pd.read_csv(filepath_or_buffer=infile, sep="\t",
                                    dtype={first_col: str}, low_memory=False)
        input_seqabun.set_index(first_col, drop=True, inplace=True)
        return(input_seqabun) 
開發者ID:picrust,項目名稱:picrust2,代碼行數:44,代碼來源:util.py


注:本文中的biom.load_table方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。