當前位置: 首頁>>代碼示例>>Python>>正文


Python bbox_transform.bbox_overlaps方法代碼示例

本文整理匯總了Python中bbox.bbox_transform.bbox_overlaps方法的典型用法代碼示例。如果您正苦於以下問題:Python bbox_transform.bbox_overlaps方法的具體用法?Python bbox_transform.bbox_overlaps怎麽用?Python bbox_transform.bbox_overlaps使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在bbox.bbox_transform的用法示例。


在下文中一共展示了bbox_transform.bbox_overlaps方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: sample_rois_v2

# 需要導入模塊: from bbox import bbox_transform [as 別名]
# 或者: from bbox.bbox_transform import bbox_overlaps [as 別名]
def sample_rois_v2(rois, num_classes, cfg,
                   labels=None, overlaps=None, bbox_targets=None, gt_boxes=None):
    """
    generate random sample of ROIs comprising foreground and background examples
    :param rois: all_rois [n, 4]; e2e: [n, 5] with batch_index
    :param fg_rois_per_image: foreground roi number
    :param rois_per_image: total roi number
    :param num_classes: number of classes
    :param labels: maybe precomputed
    :param overlaps: maybe precomputed (max_overlaps)
    :param bbox_targets: maybe precomputed
    :param gt_boxes: optional for e2e [n, 5] (x1, y1, x2, y2, cls)
    :return: (labels, rois, bbox_targets, bbox_weights)
    """
    if labels is None:
        overlaps = bbox_overlaps(rois[:, 1:].astype(np.float), gt_boxes[:, :4].astype(np.float))
        gt_assignment = overlaps.argmax(axis=1)
        overlaps = overlaps.max(axis=1)
        labels = gt_boxes[gt_assignment, 4]

    # set labels of bg_rois to be 0
    bg_ind = np.where(overlaps < cfg.TRAIN.BG_THRESH_HI)[0]
    labels[bg_ind] = 0

    # load or compute bbox_target
    if bbox_targets is not None:
        bbox_target_data = bbox_targets
    else:
        targets = bbox_transform(rois[:, 1:], gt_boxes[gt_assignment, :4])
        if cfg.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED:
            targets = ((targets - np.array(cfg.TRAIN.BBOX_MEANS))
                       / np.array(cfg.TRAIN.BBOX_STDS))
        bbox_target_data = np.hstack((labels[:, np.newaxis], targets))

    bbox_targets, bbox_weights = \
        expand_bbox_regression_targets(bbox_target_data, num_classes, cfg)

    return rois, labels, bbox_targets, bbox_weights 
開發者ID:i-pan,項目名稱:kaggle-rsna18,代碼行數:40,代碼來源:rcnn.py

示例2: create_roidb_from_box_list

# 需要導入模塊: from bbox import bbox_transform [as 別名]
# 或者: from bbox.bbox_transform import bbox_overlaps [as 別名]
def create_roidb_from_box_list(self, box_list, gt_roidb):
        """
        given ground truth, prepare roidb
        :param box_list: [image_index] ndarray of [box_index][x1, x2, y1, y2]
        :param gt_roidb: [image_index]['boxes', 'gt_classes', 'gt_overlaps', 'flipped']
        :return: roidb: [image_index]['boxes', 'gt_classes', 'gt_overlaps', 'flipped']
        """
        assert len(box_list) == self.num_images, 'number of boxes matrix must match number of images'
        roidb = []
        for i in range(self.num_images):
            roi_rec = dict()
            roi_rec['image'] = gt_roidb[i]['image']
            roi_rec['height'] = gt_roidb[i]['height']
            roi_rec['width'] = gt_roidb[i]['width']

            boxes = box_list[i]
            if boxes.shape[1] == 5:
                boxes = boxes[:, :4]
            num_boxes = boxes.shape[0]
            overlaps = np.zeros((num_boxes, self.num_classes), dtype=np.float32)
            if gt_roidb is not None and gt_roidb[i]['boxes'].size > 0:
                gt_boxes = gt_roidb[i]['boxes']
                gt_classes = gt_roidb[i]['gt_classes']
                # n boxes and k gt_boxes => n * k overlap
                gt_overlaps = bbox_overlaps(boxes.astype(np.float), gt_boxes.astype(np.float))
                # for each box in n boxes, select only maximum overlap (must be greater than zero)
                argmaxes = gt_overlaps.argmax(axis=1)
                maxes = gt_overlaps.max(axis=1)
                I = np.where(maxes > 0)[0]
                overlaps[I, gt_classes[argmaxes[I]]] = maxes[I]

            roi_rec.update({'boxes': boxes,
                            'gt_classes': np.zeros((num_boxes,), dtype=np.int32),
                            'gt_overlaps': overlaps,
                            'max_classes': overlaps.argmax(axis=1),
                            'max_overlaps': overlaps.max(axis=1),
                            'flipped': False})

            # background roi => background class
            zero_indexes = np.where(roi_rec['max_overlaps'] == 0)[0]
            assert all(roi_rec['max_classes'][zero_indexes] == 0)
            # foreground roi => foreground class
            nonzero_indexes = np.where(roi_rec['max_overlaps'] > 0)[0]
            assert all(roi_rec['max_classes'][nonzero_indexes] != 0)

            roidb.append(roi_rec)

        return roidb 
開發者ID:tonysy,項目名稱:Deep-Feature-Flow-Segmentation,代碼行數:50,代碼來源:imdb.py

示例3: forward

# 需要導入模塊: from bbox import bbox_transform [as 別名]
# 或者: from bbox.bbox_transform import bbox_overlaps [as 別名]
def forward(self, is_train, req, in_data, out_data, aux):
        # bbox, [first_n, num_fg_classes, 4]
        bbox = in_data[0].asnumpy()
        num_boxes = bbox.shape[0]
        num_fg_classes = bbox.shape[1]
        gt_box = in_data[1].asnumpy()
        # score, [first_n, num_fg_classes]
        score = in_data[2].asnumpy()

        batch_image, num_gt, code_size = gt_box.shape
        assert batch_image == 1, 'only support batch_image=1, but receive %d' % num_gt
        assert code_size == 5, 'code_size of gt should be 5, but receive %d' % code_size
        assert len(score.shape) == 2, 'shape of score is %d instead of 2.' % len(score.shape)
        assert score.shape[1] == num_fg_classes, 'number of fg classes should be same for boxes and scores'

        output_list = []
        for cls_idx in range(0, num_fg_classes):
            valid_gt_mask = (gt_box[0, :, -1].astype(np.int32)==(cls_idx+1))
            valid_gt_box = gt_box[0, valid_gt_mask, :]
            num_valid_gt = len(valid_gt_box)

            if num_valid_gt == 0:
               output = np.zeros(shape=(num_boxes, self._num_thresh), dtype=np.float32)
               output_list.append(output)
            else:
                bbox_per_class = bbox[:, cls_idx, :]
                score_per_class = score[:, cls_idx:cls_idx+1]
                overlap_mat = bbox_overlaps(bbox_per_class.astype(np.float),
                                            valid_gt_box[:,:-1].astype(np.float))

                eye_matrix = np.eye(num_valid_gt)
                output_list_per_class = []

                for thresh in self._target_thresh:
                    # following mAP metric
                    overlap_mask = (overlap_mat > thresh)
                    valid_bbox_indices = np.where(overlap_mask)[0]
                    # require score be 2-dim
                    overlap_score = np.tile(score_per_class, (1, num_valid_gt))
                    overlap_score *= overlap_mask
                    max_overlap_indices = np.argmax(overlap_mat, axis=1)
                    max_overlap_mask = eye_matrix[max_overlap_indices]
                    overlap_score *= max_overlap_mask
                    max_score_indices = np.argmax(overlap_score, axis=0)
                    output = np.zeros((num_boxes,))
                    output[np.intersect1d(max_score_indices,valid_bbox_indices)] = 1
                    output_list_per_class.append(output)
                output_per_class = np.stack(output_list_per_class, axis=-1)
                output_list.append(output_per_class)
        blob = np.stack(output_list, axis=1).astype(np.float32, copy=False)
        self.assign(out_data[0], req[0], blob) 
開發者ID:i-pan,項目名稱:kaggle-rsna18,代碼行數:53,代碼來源:nms_multi_target.py

示例4: create_roidb_from_box_list

# 需要導入模塊: from bbox import bbox_transform [as 別名]
# 或者: from bbox.bbox_transform import bbox_overlaps [as 別名]
def create_roidb_from_box_list(self, box_list, gt_roidb):
        """
        given ground truth, prepare roidb
        :param box_list: [image_index] ndarray of [box_index][x1, x2, y1, y2]
        :param gt_roidb: [image_index]['boxes', 'gt_classes', 'gt_overlaps', 'flipped']
        :return: roidb: [image_index]['boxes', 'gt_classes', 'gt_overlaps', 'flipped']
        """
        assert len(box_list) == self.num_images, 'number of boxes matrix must match number of images'
        roidb = []
        for i in range(self.num_images):
            roi_rec = dict()
            roi_rec['image'] = gt_roidb[i]['image']
            roi_rec['height'] = gt_roidb[i]['height']
            roi_rec['width'] = gt_roidb[i]['width']

            boxes = box_list[i]
            if boxes.shape[1] == 5:
                boxes = boxes[:, :4]
            num_boxes = boxes.shape[0]
            overlaps = np.zeros((num_boxes, self.num_classes), dtype=np.float32)
            if gt_roidb is not None and gt_roidb[i]['boxes'].size > 0:
                gt_boxes = gt_roidb[i]['boxes']
                gt_classes = gt_roidb[i]['gt_classes']
                # n boxes and k gt_boxes => n * k overlap
                gt_overlaps = bbox_overlaps(boxes.astype(np.float), gt_boxes.astype(np.float))
                # for each box in n boxes, select only maximum overlap (must be greater than zero)
                argmaxes = gt_overlaps.argmax(axis=1)
                maxes = gt_overlaps.max(axis=1)
                I = np.where(maxes > 0)[0]
                overlaps[I, gt_classes[argmaxes[I]]] = maxes[I]

            roi_rec.update({'boxes': boxes,
                            'gt_classes': np.zeros((num_boxes,), dtype=np.int32),
                            'gt_overlaps': overlaps,
                            'max_classes': overlaps.argmax(axis=1),
                            'max_overlaps': overlaps.max(axis=1),
                            'flipped': False,
                            'is_gt': np.zeros(num_boxes)})

            # background roi => background class
            zero_indexes = np.where(roi_rec['max_overlaps'] == 0)[0]
            assert all(roi_rec['max_classes'][zero_indexes] == 0)
            # foreground roi => foreground class
            nonzero_indexes = np.where(roi_rec['max_overlaps'] > 0)[0]
            assert all(roi_rec['max_classes'][nonzero_indexes] != 0)

            roidb.append(roi_rec)

        return roidb 
開發者ID:i-pan,項目名稱:kaggle-rsna18,代碼行數:51,代碼來源:imdb.py

示例5: resample_rois

# 需要導入模塊: from bbox import bbox_transform [as 別名]
# 或者: from bbox.bbox_transform import bbox_overlaps [as 別名]
def resample_rois(rois, fg_rois_per_image, rois_per_image, num_classes, cfg,
                  labels=None, overlaps=None, bbox_targets=None, gt_boxes=None):
    """
    generate random sample of ROIs comprising foreground and background examples
    :param rois: all_rois [n, 4]; e2e: [n, 5] with batch_index
    :param fg_rois_per_image: foreground roi number
    :param rois_per_image: total roi number
    :param num_classes: number of classes
    :param labels: maybe precomputed
    :param overlaps: maybe precomputed (max_overlaps)
    :param bbox_targets: maybe precomputed
    :param gt_boxes: optional for e2e [n, 5] (x1, y1, x2, y2, cls)
    :return: (labels, rois, bbox_targets, bbox_weights)
    """
    if labels is None:
        overlaps = bbox_overlaps(rois[:, 1:].astype(np.float), gt_boxes[:, :4].astype(np.float))
        gt_assignment = overlaps.argmax(axis=1)
        overlaps = overlaps.max(axis=1)
        labels = gt_boxes[gt_assignment, 4]

    # foreground RoI with FG_THRESH overlap
    fg_indexes = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0]
    # guard against the case when an image has fewer than fg_rois_per_image foreground RoIs
    fg_rois_per_this_image = np.minimum(fg_rois_per_image, fg_indexes.size)
    # Sample foreground regions without replacement
    if len(fg_indexes) > fg_rois_per_this_image:
        fg_indexes = npr.choice(fg_indexes, size=fg_rois_per_this_image, replace=False)

    # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI)
    bg_indexes = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) & (overlaps >= cfg.TRAIN.BG_THRESH_LO))[0]
    # Compute number of background RoIs to take from this image (guarding against there being fewer than desired)
    bg_rois_per_this_image = rois_per_image - fg_rois_per_this_image
    bg_rois_per_this_image = np.minimum(bg_rois_per_this_image, bg_indexes.size)
    # Sample foreground regions without replacement
    if len(bg_indexes) > bg_rois_per_this_image:
        bg_indexes = npr.choice(bg_indexes, size=bg_rois_per_this_image, replace=False)

    # indexes selected
    keep_indexes = np.append(fg_indexes, bg_indexes)

    # pad more to ensure a fixed minibatch size
    while keep_indexes.shape[0] < rois_per_image:
        gap = np.minimum(len(rois), rois_per_image - keep_indexes.shape[0])
        gap_indexes = npr.choice(range(len(rois)), size=gap, replace=False)
        keep_indexes = np.append(keep_indexes, gap_indexes)

    return keep_indexes 
開發者ID:SHI-Labs,項目名稱:Decoupled-Classification-Refinement,代碼行數:49,代碼來源:rcnn.py


注:本文中的bbox.bbox_transform.bbox_overlaps方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。