本文整理匯總了Python中bbox.bbox_transform.bbox_overlaps方法的典型用法代碼示例。如果您正苦於以下問題:Python bbox_transform.bbox_overlaps方法的具體用法?Python bbox_transform.bbox_overlaps怎麽用?Python bbox_transform.bbox_overlaps使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類bbox.bbox_transform
的用法示例。
在下文中一共展示了bbox_transform.bbox_overlaps方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: sample_rois_v2
# 需要導入模塊: from bbox import bbox_transform [as 別名]
# 或者: from bbox.bbox_transform import bbox_overlaps [as 別名]
def sample_rois_v2(rois, num_classes, cfg,
labels=None, overlaps=None, bbox_targets=None, gt_boxes=None):
"""
generate random sample of ROIs comprising foreground and background examples
:param rois: all_rois [n, 4]; e2e: [n, 5] with batch_index
:param fg_rois_per_image: foreground roi number
:param rois_per_image: total roi number
:param num_classes: number of classes
:param labels: maybe precomputed
:param overlaps: maybe precomputed (max_overlaps)
:param bbox_targets: maybe precomputed
:param gt_boxes: optional for e2e [n, 5] (x1, y1, x2, y2, cls)
:return: (labels, rois, bbox_targets, bbox_weights)
"""
if labels is None:
overlaps = bbox_overlaps(rois[:, 1:].astype(np.float), gt_boxes[:, :4].astype(np.float))
gt_assignment = overlaps.argmax(axis=1)
overlaps = overlaps.max(axis=1)
labels = gt_boxes[gt_assignment, 4]
# set labels of bg_rois to be 0
bg_ind = np.where(overlaps < cfg.TRAIN.BG_THRESH_HI)[0]
labels[bg_ind] = 0
# load or compute bbox_target
if bbox_targets is not None:
bbox_target_data = bbox_targets
else:
targets = bbox_transform(rois[:, 1:], gt_boxes[gt_assignment, :4])
if cfg.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED:
targets = ((targets - np.array(cfg.TRAIN.BBOX_MEANS))
/ np.array(cfg.TRAIN.BBOX_STDS))
bbox_target_data = np.hstack((labels[:, np.newaxis], targets))
bbox_targets, bbox_weights = \
expand_bbox_regression_targets(bbox_target_data, num_classes, cfg)
return rois, labels, bbox_targets, bbox_weights
示例2: create_roidb_from_box_list
# 需要導入模塊: from bbox import bbox_transform [as 別名]
# 或者: from bbox.bbox_transform import bbox_overlaps [as 別名]
def create_roidb_from_box_list(self, box_list, gt_roidb):
"""
given ground truth, prepare roidb
:param box_list: [image_index] ndarray of [box_index][x1, x2, y1, y2]
:param gt_roidb: [image_index]['boxes', 'gt_classes', 'gt_overlaps', 'flipped']
:return: roidb: [image_index]['boxes', 'gt_classes', 'gt_overlaps', 'flipped']
"""
assert len(box_list) == self.num_images, 'number of boxes matrix must match number of images'
roidb = []
for i in range(self.num_images):
roi_rec = dict()
roi_rec['image'] = gt_roidb[i]['image']
roi_rec['height'] = gt_roidb[i]['height']
roi_rec['width'] = gt_roidb[i]['width']
boxes = box_list[i]
if boxes.shape[1] == 5:
boxes = boxes[:, :4]
num_boxes = boxes.shape[0]
overlaps = np.zeros((num_boxes, self.num_classes), dtype=np.float32)
if gt_roidb is not None and gt_roidb[i]['boxes'].size > 0:
gt_boxes = gt_roidb[i]['boxes']
gt_classes = gt_roidb[i]['gt_classes']
# n boxes and k gt_boxes => n * k overlap
gt_overlaps = bbox_overlaps(boxes.astype(np.float), gt_boxes.astype(np.float))
# for each box in n boxes, select only maximum overlap (must be greater than zero)
argmaxes = gt_overlaps.argmax(axis=1)
maxes = gt_overlaps.max(axis=1)
I = np.where(maxes > 0)[0]
overlaps[I, gt_classes[argmaxes[I]]] = maxes[I]
roi_rec.update({'boxes': boxes,
'gt_classes': np.zeros((num_boxes,), dtype=np.int32),
'gt_overlaps': overlaps,
'max_classes': overlaps.argmax(axis=1),
'max_overlaps': overlaps.max(axis=1),
'flipped': False})
# background roi => background class
zero_indexes = np.where(roi_rec['max_overlaps'] == 0)[0]
assert all(roi_rec['max_classes'][zero_indexes] == 0)
# foreground roi => foreground class
nonzero_indexes = np.where(roi_rec['max_overlaps'] > 0)[0]
assert all(roi_rec['max_classes'][nonzero_indexes] != 0)
roidb.append(roi_rec)
return roidb
示例3: forward
# 需要導入模塊: from bbox import bbox_transform [as 別名]
# 或者: from bbox.bbox_transform import bbox_overlaps [as 別名]
def forward(self, is_train, req, in_data, out_data, aux):
# bbox, [first_n, num_fg_classes, 4]
bbox = in_data[0].asnumpy()
num_boxes = bbox.shape[0]
num_fg_classes = bbox.shape[1]
gt_box = in_data[1].asnumpy()
# score, [first_n, num_fg_classes]
score = in_data[2].asnumpy()
batch_image, num_gt, code_size = gt_box.shape
assert batch_image == 1, 'only support batch_image=1, but receive %d' % num_gt
assert code_size == 5, 'code_size of gt should be 5, but receive %d' % code_size
assert len(score.shape) == 2, 'shape of score is %d instead of 2.' % len(score.shape)
assert score.shape[1] == num_fg_classes, 'number of fg classes should be same for boxes and scores'
output_list = []
for cls_idx in range(0, num_fg_classes):
valid_gt_mask = (gt_box[0, :, -1].astype(np.int32)==(cls_idx+1))
valid_gt_box = gt_box[0, valid_gt_mask, :]
num_valid_gt = len(valid_gt_box)
if num_valid_gt == 0:
output = np.zeros(shape=(num_boxes, self._num_thresh), dtype=np.float32)
output_list.append(output)
else:
bbox_per_class = bbox[:, cls_idx, :]
score_per_class = score[:, cls_idx:cls_idx+1]
overlap_mat = bbox_overlaps(bbox_per_class.astype(np.float),
valid_gt_box[:,:-1].astype(np.float))
eye_matrix = np.eye(num_valid_gt)
output_list_per_class = []
for thresh in self._target_thresh:
# following mAP metric
overlap_mask = (overlap_mat > thresh)
valid_bbox_indices = np.where(overlap_mask)[0]
# require score be 2-dim
overlap_score = np.tile(score_per_class, (1, num_valid_gt))
overlap_score *= overlap_mask
max_overlap_indices = np.argmax(overlap_mat, axis=1)
max_overlap_mask = eye_matrix[max_overlap_indices]
overlap_score *= max_overlap_mask
max_score_indices = np.argmax(overlap_score, axis=0)
output = np.zeros((num_boxes,))
output[np.intersect1d(max_score_indices,valid_bbox_indices)] = 1
output_list_per_class.append(output)
output_per_class = np.stack(output_list_per_class, axis=-1)
output_list.append(output_per_class)
blob = np.stack(output_list, axis=1).astype(np.float32, copy=False)
self.assign(out_data[0], req[0], blob)
示例4: create_roidb_from_box_list
# 需要導入模塊: from bbox import bbox_transform [as 別名]
# 或者: from bbox.bbox_transform import bbox_overlaps [as 別名]
def create_roidb_from_box_list(self, box_list, gt_roidb):
"""
given ground truth, prepare roidb
:param box_list: [image_index] ndarray of [box_index][x1, x2, y1, y2]
:param gt_roidb: [image_index]['boxes', 'gt_classes', 'gt_overlaps', 'flipped']
:return: roidb: [image_index]['boxes', 'gt_classes', 'gt_overlaps', 'flipped']
"""
assert len(box_list) == self.num_images, 'number of boxes matrix must match number of images'
roidb = []
for i in range(self.num_images):
roi_rec = dict()
roi_rec['image'] = gt_roidb[i]['image']
roi_rec['height'] = gt_roidb[i]['height']
roi_rec['width'] = gt_roidb[i]['width']
boxes = box_list[i]
if boxes.shape[1] == 5:
boxes = boxes[:, :4]
num_boxes = boxes.shape[0]
overlaps = np.zeros((num_boxes, self.num_classes), dtype=np.float32)
if gt_roidb is not None and gt_roidb[i]['boxes'].size > 0:
gt_boxes = gt_roidb[i]['boxes']
gt_classes = gt_roidb[i]['gt_classes']
# n boxes and k gt_boxes => n * k overlap
gt_overlaps = bbox_overlaps(boxes.astype(np.float), gt_boxes.astype(np.float))
# for each box in n boxes, select only maximum overlap (must be greater than zero)
argmaxes = gt_overlaps.argmax(axis=1)
maxes = gt_overlaps.max(axis=1)
I = np.where(maxes > 0)[0]
overlaps[I, gt_classes[argmaxes[I]]] = maxes[I]
roi_rec.update({'boxes': boxes,
'gt_classes': np.zeros((num_boxes,), dtype=np.int32),
'gt_overlaps': overlaps,
'max_classes': overlaps.argmax(axis=1),
'max_overlaps': overlaps.max(axis=1),
'flipped': False,
'is_gt': np.zeros(num_boxes)})
# background roi => background class
zero_indexes = np.where(roi_rec['max_overlaps'] == 0)[0]
assert all(roi_rec['max_classes'][zero_indexes] == 0)
# foreground roi => foreground class
nonzero_indexes = np.where(roi_rec['max_overlaps'] > 0)[0]
assert all(roi_rec['max_classes'][nonzero_indexes] != 0)
roidb.append(roi_rec)
return roidb
示例5: resample_rois
# 需要導入模塊: from bbox import bbox_transform [as 別名]
# 或者: from bbox.bbox_transform import bbox_overlaps [as 別名]
def resample_rois(rois, fg_rois_per_image, rois_per_image, num_classes, cfg,
labels=None, overlaps=None, bbox_targets=None, gt_boxes=None):
"""
generate random sample of ROIs comprising foreground and background examples
:param rois: all_rois [n, 4]; e2e: [n, 5] with batch_index
:param fg_rois_per_image: foreground roi number
:param rois_per_image: total roi number
:param num_classes: number of classes
:param labels: maybe precomputed
:param overlaps: maybe precomputed (max_overlaps)
:param bbox_targets: maybe precomputed
:param gt_boxes: optional for e2e [n, 5] (x1, y1, x2, y2, cls)
:return: (labels, rois, bbox_targets, bbox_weights)
"""
if labels is None:
overlaps = bbox_overlaps(rois[:, 1:].astype(np.float), gt_boxes[:, :4].astype(np.float))
gt_assignment = overlaps.argmax(axis=1)
overlaps = overlaps.max(axis=1)
labels = gt_boxes[gt_assignment, 4]
# foreground RoI with FG_THRESH overlap
fg_indexes = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0]
# guard against the case when an image has fewer than fg_rois_per_image foreground RoIs
fg_rois_per_this_image = np.minimum(fg_rois_per_image, fg_indexes.size)
# Sample foreground regions without replacement
if len(fg_indexes) > fg_rois_per_this_image:
fg_indexes = npr.choice(fg_indexes, size=fg_rois_per_this_image, replace=False)
# Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI)
bg_indexes = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) & (overlaps >= cfg.TRAIN.BG_THRESH_LO))[0]
# Compute number of background RoIs to take from this image (guarding against there being fewer than desired)
bg_rois_per_this_image = rois_per_image - fg_rois_per_this_image
bg_rois_per_this_image = np.minimum(bg_rois_per_this_image, bg_indexes.size)
# Sample foreground regions without replacement
if len(bg_indexes) > bg_rois_per_this_image:
bg_indexes = npr.choice(bg_indexes, size=bg_rois_per_this_image, replace=False)
# indexes selected
keep_indexes = np.append(fg_indexes, bg_indexes)
# pad more to ensure a fixed minibatch size
while keep_indexes.shape[0] < rois_per_image:
gap = np.minimum(len(rois), rois_per_image - keep_indexes.shape[0])
gap_indexes = npr.choice(range(len(rois)), size=gap, replace=False)
keep_indexes = np.append(keep_indexes, gap_indexes)
return keep_indexes