本文整理匯總了Python中bayes_opt.BayesianOptimization方法的典型用法代碼示例。如果您正苦於以下問題:Python bayes_opt.BayesianOptimization方法的具體用法?Python bayes_opt.BayesianOptimization怎麽用?Python bayes_opt.BayesianOptimization使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類bayes_opt
的用法示例。
在下文中一共展示了bayes_opt.BayesianOptimization方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: bo
# 需要導入模塊: import bayes_opt [as 別名]
# 或者: from bayes_opt import BayesianOptimization [as 別名]
def bo(self) -> BayesianOptimization:
if self._bo is None:
bounds = {f"x{i}": (0.0, 1.0) for i in range(self.dimension)}
self._bo = BayesianOptimization(self._fake_function, bounds, random_state=self._rng)
if self.gp_parameters is not None:
self._bo.set_gp_params(**self.gp_parameters)
# init
init = self.initialization
if self.middle_point:
self._bo.probe([0.5] * self.dimension, lazy=True)
elif init is None:
self._bo._queue.add(self._bo._space.random_sample())
if init is not None:
init_budget = int(np.sqrt(self.budget) if self.init_budget is None else self.init_budget)
init_budget -= self.middle_point
if init_budget > 0:
sampler = {"Hammersley": sequences.HammersleySampler, "LHS": sequences.LHSSampler, "random": sequences.RandomSampler}[
init
](self.dimension, budget=init_budget, scrambling=(init == "Hammersley"), random_state=self._rng)
for point in sampler:
self._bo.probe(point, lazy=True)
return self._bo
示例2: optimize_svc
# 需要導入模塊: import bayes_opt [as 別名]
# 或者: from bayes_opt import BayesianOptimization [as 別名]
def optimize_svc(data, targets):
"""Apply Bayesian Optimization to SVC parameters."""
def svc_crossval(expC, expGamma):
"""Wrapper of SVC cross validation.
Notice how we transform between regular and log scale. While this
is not technically necessary, it greatly improves the performance
of the optimizer.
"""
C = 10 ** expC
gamma = 10 ** expGamma
return svc_cv(C=C, gamma=gamma, data=data, targets=targets)
optimizer = BayesianOptimization(
f=svc_crossval,
pbounds={"expC": (-3, 2), "expGamma": (-4, -1)},
random_state=1234,
verbose=2
)
optimizer.maximize(n_iter=10)
print("Final result:", optimizer.max)
示例3: optimize_rfc
# 需要導入模塊: import bayes_opt [as 別名]
# 或者: from bayes_opt import BayesianOptimization [as 別名]
def optimize_rfc(data, targets):
"""Apply Bayesian Optimization to Random Forest parameters."""
def rfc_crossval(n_estimators, min_samples_split, max_features):
"""Wrapper of RandomForest cross validation.
Notice how we ensure n_estimators and min_samples_split are casted
to integer before we pass them along. Moreover, to avoid max_features
taking values outside the (0, 1) range, we also ensure it is capped
accordingly.
"""
return rfc_cv(
n_estimators=int(n_estimators),
min_samples_split=int(min_samples_split),
max_features=max(min(max_features, 0.999), 1e-3),
data=data,
targets=targets,
)
optimizer = BayesianOptimization(
f=rfc_crossval,
pbounds={
"n_estimators": (10, 250),
"min_samples_split": (2, 25),
"max_features": (0.1, 0.999),
},
random_state=1234,
verbose=2
)
optimizer.maximize(n_iter=10)
print("Final result:", optimizer.max)
示例4: test_logs
# 需要導入模塊: import bayes_opt [as 別名]
# 或者: from bayes_opt import BayesianOptimization [as 別名]
def test_logs():
import pytest
def f(x, y):
return -x ** 2 - (y - 1) ** 2 + 1
optimizer = BayesianOptimization(
f=f,
pbounds={"x": (-2, 2), "y": (-2, 2)}
)
assert len(optimizer.space) == 0
load_logs(optimizer, "./tests/test_logs.json")
assert len(optimizer.space) == 5
load_logs(optimizer, ["./tests/test_logs.json"])
assert len(optimizer.space) == 5
other_optimizer = BayesianOptimization(
f=lambda x: -x ** 2,
pbounds={"x": (-2, 2)}
)
with pytest.raises(ValueError):
load_logs(other_optimizer, ["./tests/test_logs.json"])
示例5: test_register
# 需要導入模塊: import bayes_opt [as 別名]
# 或者: from bayes_opt import BayesianOptimization [as 別名]
def test_register():
optimizer = BayesianOptimization(target_func, PBOUNDS, random_state=1)
assert len(optimizer.space) == 0
optimizer.register(params={"p1": 1, "p2": 2}, target=3)
assert len(optimizer.res) == 1
assert len(optimizer.space) == 1
optimizer.space.register(params={"p1": 5, "p2": 4}, target=9)
assert len(optimizer.res) == 2
assert len(optimizer.space) == 2
with pytest.raises(KeyError):
optimizer.register(params={"p1": 1, "p2": 2}, target=3)
with pytest.raises(KeyError):
optimizer.register(params={"p1": 5, "p2": 4}, target=9)
示例6: test_suggest_with_one_observation
# 需要導入模塊: import bayes_opt [as 別名]
# 或者: from bayes_opt import BayesianOptimization [as 別名]
def test_suggest_with_one_observation():
util = UtilityFunction(kind="ucb", kappa=5, xi=0)
optimizer = BayesianOptimization(target_func, PBOUNDS, random_state=1)
optimizer.register(params={"p1": 1, "p2": 2}, target=3)
for _ in range(5):
sample = optimizer.space.params_to_array(optimizer.suggest(util))
assert len(sample) == optimizer.space.dim
assert all(sample >= optimizer.space.bounds[:, 0])
assert all(sample <= optimizer.space.bounds[:, 1])
# suggestion = optimizer.suggest(util)
# for _ in range(5):
# new_suggestion = optimizer.suggest(util)
# assert suggestion == new_suggestion
示例7: test_set_bounds
# 需要導入模塊: import bayes_opt [as 別名]
# 或者: from bayes_opt import BayesianOptimization [as 別名]
def test_set_bounds():
pbounds = {
'p1': (0, 1),
'p3': (0, 3),
'p2': (0, 2),
'p4': (0, 4),
}
optimizer = BayesianOptimization(target_func, pbounds, random_state=1)
# Ignore unknown keys
optimizer.set_bounds({"other": (7, 8)})
assert all(optimizer.space.bounds[:, 0] == np.array([0, 0, 0, 0]))
assert all(optimizer.space.bounds[:, 1] == np.array([1, 2, 3, 4]))
# Update bounds accordingly
optimizer.set_bounds({"p2": (1, 8)})
assert all(optimizer.space.bounds[:, 0] == np.array([0, 1, 0, 0]))
assert all(optimizer.space.bounds[:, 1] == np.array([1, 8, 3, 4]))
示例8: initial_queries
# 需要導入模塊: import bayes_opt [as 別名]
# 或者: from bayes_opt import BayesianOptimization [as 別名]
def initial_queries(bo):
"""
script which explores the initial query points of a BayesianOptimization
instance, reports errors to Slack
Input: instance of a BayesianOptimization
"""
# loop to try a second time in case of error
errcount = 0
for i in range(2):
try:
bo.maximize(init_points=3, n_iter=1, kappa=5) # would be just this line without errorhandling
except KeyBoardInterrupt:
raise
except:
if errcount == 1:
text = "Exception occured twice in initialization, aborting!"
print(text)
sc.api_call("chat.postMessage",channel="CA26521FW",
text=text,username="Botty",
unfurl_links="true")
raise
errcount =+ 1
return bo
示例9: bayes_optimization_cnn
# 需要導入模塊: import bayes_opt [as 別名]
# 或者: from bayes_opt import BayesianOptimization [as 別名]
def bayes_optimization_cnn(iterations):
"""
script to set boundaries for search space for bayesian optimization
of the cnn parameters
"""
gp_params = {"alpha": 1e-5}
bo = BayesianOptimization(evaluate_cnn,
{'learning_rate': (1e-07, 1e-03),
'batch_size': (1, 1),
'dropout': (0, 0),
'dense_dim': (1.51, 1.51), # 0.51, 4.49 = 512 - 2048
'dense_layers': (0.5001, 0.5001)}
)
bo.explore({'learning_rate': [1.1787686347935867e-05],
'dropout': [0],
'dense_layers': [1.0],
'dense_dim': [1.51],
'batch_size': [4.49]
})
bo = initial_queries(bo)
bo = exploration(iterations,bo)
print(bo.res['max'])
示例10: __init__
# 需要導入模塊: import bayes_opt [as 別名]
# 或者: from bayes_opt import BayesianOptimization [as 別名]
def __init__(
self,
parametrization: IntOrParameter,
budget: Optional[int] = None,
num_workers: int = 1,
*,
initialization: Optional[str] = None,
init_budget: Optional[int] = None,
middle_point: bool = False,
utility_kind: str = "ucb", # bayes_opt default
utility_kappa: float = 2.576,
utility_xi: float = 0.0,
gp_parameters: Optional[Dict[str, Any]] = None,
) -> None:
super().__init__(parametrization, budget=budget, num_workers=num_workers)
self._transform = transforms.ArctanBound(0, 1)
self._bo: Optional[BayesianOptimization] = None
self._fake_function = _FakeFunction()
# configuration
assert initialization is None or initialization in ["random", "Hammersley", "LHS"], f"Unknown init {initialization}"
self.initialization = initialization
self.init_budget = init_budget
self.middle_point = middle_point
self.utility_kind = utility_kind
self.utility_kappa = utility_kappa
self.utility_xi = utility_xi
self.gp_parameters = {} if gp_parameters is None else gp_parameters
if isinstance(parametrization, p.Parameter) and self.gp_parameters.get("alpha", 0) == 0:
noisy = not parametrization.descriptors.deterministic
cont = parametrization.descriptors.continuous
if noisy or not cont:
warnings.warn(
"Dis-continuous and noisy parametrization require gp_parameters['alpha'] > 0 "
"(for your parametrization, continuity={cont} and noisy={noisy}).\n"
"Find more information on BayesianOptimization's github.\n"
"You should then create a new instance of optimizerlib.ParametrizedBO with appropriate parametrization.",
InefficientSettingsWarning,
)
示例11: hyperopt
# 需要導入模塊: import bayes_opt [as 別名]
# 或者: from bayes_opt import BayesianOptimization [as 別名]
def hyperopt(self,
fn,
X,
X_val=None,
X_tst=None,
n_trials=5,
init_points=5,
n_iter=20,
batch_size=64,
params={'n_hidden_l1': (32, 256),
'n_hidden_l2': (32, 256),
'dropout_rate': (.1, .8)},
verbose=0,
seed=None,
**kwargs):
self.bo = bo = BayesianOptimization(
f=functools.partial(fn,
X,
X_val,
X_tst,
n_trials=n_trials,
batch_size=batch_size,
verbose=verbose-1,
seed=seed,
return_probs=False),
pbounds=params,
# random_state=1,
**kwargs
)
bo.maximize(
init_points=init_points,
n_iter=n_iter,
)
print(bo.max)
示例12: hyperopt
# 需要導入模塊: import bayes_opt [as 別名]
# 或者: from bayes_opt import BayesianOptimization [as 別名]
def hyperopt(self,
fn,
X,
X_val=None,
X_tst=None,
init_points=5,
n_iter=20,
batch_size=32,
params={'n_hidden_l1': (32, 256),
'n_hidden_l2': (32, 256),
'dropout_rate': (.1, .8)},
verbose=0,
**kwargs):
self.bo = bo = BayesianOptimization(
f=functools.partial(fn,
X,
X_val,
X_tst,
batch_size=batch_size,
verbose=0,
return_probs=False),
pbounds=params,
# random_state=1,
**kwargs
)
# logger = JSONLogger(path="tmp/hyperopt/logs.json")
# bo.subscribe(Events.OPTMIZATION_STEP, logger)
bo.maximize(
init_points=init_points,
n_iter=n_iter,
)
print(bo.max)
示例13: test_probe_lazy
# 需要導入模塊: import bayes_opt [as 別名]
# 或者: from bayes_opt import BayesianOptimization [as 別名]
def test_probe_lazy():
optimizer = BayesianOptimization(target_func, PBOUNDS, random_state=1)
optimizer.probe(params={"p1": 1, "p2": 2}, lazy=True)
assert len(optimizer.space) == 0
assert len(optimizer._queue) == 1
optimizer.probe(params={"p1": 6, "p2": 2}, lazy=True)
assert len(optimizer.space) == 0
assert len(optimizer._queue) == 2
optimizer.probe(params={"p1": 6, "p2": 2}, lazy=True)
assert len(optimizer.space) == 0
assert len(optimizer._queue) == 3
示例14: test_suggest_at_random
# 需要導入模塊: import bayes_opt [as 別名]
# 或者: from bayes_opt import BayesianOptimization [as 別名]
def test_suggest_at_random():
util = UtilityFunction(kind="poi", kappa=5, xi=0)
optimizer = BayesianOptimization(target_func, PBOUNDS, random_state=1)
for _ in range(50):
sample = optimizer.space.params_to_array(optimizer.suggest(util))
assert len(sample) == optimizer.space.dim
assert all(sample >= optimizer.space.bounds[:, 0])
assert all(sample <= optimizer.space.bounds[:, 1])
示例15: test_prime_queue_all_empty
# 需要導入模塊: import bayes_opt [as 別名]
# 或者: from bayes_opt import BayesianOptimization [as 別名]
def test_prime_queue_all_empty():
optimizer = BayesianOptimization(target_func, PBOUNDS, random_state=1)
assert len(optimizer._queue) == 0
assert len(optimizer.space) == 0
optimizer._prime_queue(init_points=0)
assert len(optimizer._queue) == 1
assert len(optimizer.space) == 0