當前位置: 首頁>>代碼示例>>Python>>正文


Python mlp_policy.MlpPolicy方法代碼示例

本文整理匯總了Python中baselines.ppo1.mlp_policy.MlpPolicy方法的典型用法代碼示例。如果您正苦於以下問題:Python mlp_policy.MlpPolicy方法的具體用法?Python mlp_policy.MlpPolicy怎麽用?Python mlp_policy.MlpPolicy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在baselines.ppo1.mlp_policy的用法示例。


在下文中一共展示了mlp_policy.MlpPolicy方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: train

# 需要導入模塊: from baselines.ppo1 import mlp_policy [as 別名]
# 或者: from baselines.ppo1.mlp_policy import MlpPolicy [as 別名]
def train(env_id, num_timesteps, seed):
    import baselines.common.tf_util as U
    sess = U.single_threaded_session()
    sess.__enter__()

    rank = MPI.COMM_WORLD.Get_rank()
    if rank == 0:
        logger.configure()
    else:
        logger.configure(format_strs=[])
        logger.set_level(logger.DISABLED)
    workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
    def policy_fn(name, ob_space, ac_space):
        return MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
            hid_size=32, num_hid_layers=2)
    env = make_mujoco_env(env_id, workerseed)
    trpo_mpi.learn(env, policy_fn, timesteps_per_batch=1024, max_kl=0.01, cg_iters=10, cg_damping=0.1,
        max_timesteps=num_timesteps, gamma=0.99, lam=0.98, vf_iters=5, vf_stepsize=1e-3)
    env.close() 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:21,代碼來源:run_mujoco.py

示例2: train

# 需要導入模塊: from baselines.ppo1 import mlp_policy [as 別名]
# 或者: from baselines.ppo1.mlp_policy import MlpPolicy [as 別名]
def train(env_id, num_timesteps, seed):
    from baselines.ppo1 import mlp_policy, pposgd_simple
    import baselines.common.tf_util as U
    rank = MPI.COMM_WORLD.Get_rank()
    sess = U.single_threaded_session()
    sess.__enter__()
    mujoco_py.ignore_mujoco_warnings().__enter__()
    workerseed = seed + 10000 * rank
    set_global_seeds(workerseed)
    env = make_robotics_env(env_id, workerseed, rank=rank)
    def policy_fn(name, ob_space, ac_space):
        return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
            hid_size=256, num_hid_layers=3)

    pposgd_simple.learn(env, policy_fn,
            max_timesteps=num_timesteps,
            timesteps_per_actorbatch=2048,
            clip_param=0.2, entcoeff=0.0,
            optim_epochs=5, optim_stepsize=3e-4, optim_batchsize=256,
            gamma=0.99, lam=0.95, schedule='linear',
        )
    env.close() 
開發者ID:MaxSobolMark,項目名稱:HardRLWithYoutube,代碼行數:24,代碼來源:run_robotics.py

示例3: train

# 需要導入模塊: from baselines.ppo1 import mlp_policy [as 別名]
# 或者: from baselines.ppo1.mlp_policy import MlpPolicy [as 別名]
def train(env_id, num_timesteps, seed):
    import baselines.common.tf_util as U
    sess = U.single_threaded_session()
    sess.__enter__()

    rank = MPI.COMM_WORLD.Get_rank()
    if rank != 0:
        logger.set_level(logger.DISABLED)
    workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
    set_global_seeds(workerseed)
    env = gym.make(env_id)
    def policy_fn(name, ob_space, ac_space):
        return MlpPolicy(name=name, ob_space=env.observation_space, ac_space=env.action_space,
            hid_size=32, num_hid_layers=2)
    env = bench.Monitor(env, logger.get_dir() and
        osp.join(logger.get_dir(), str(rank)))
    env.seed(workerseed)
    gym.logger.setLevel(logging.WARN)

    trpo_mpi.learn(env, policy_fn, timesteps_per_batch=1024, max_kl=0.01, cg_iters=10, cg_damping=0.1,
        max_timesteps=num_timesteps, gamma=0.99, lam=0.98, vf_iters=5, vf_stepsize=1e-3)
    env.close() 
開發者ID:cxxgtxy,項目名稱:deeprl-baselines,代碼行數:24,代碼來源:run_mujoco.py

示例4: train

# 需要導入模塊: from baselines.ppo1 import mlp_policy [as 別名]
# 或者: from baselines.ppo1.mlp_policy import MlpPolicy [as 別名]
def train(env_id, num_timesteps, seed):
    from baselines.ppo1 import mlp_policy, pposgd_simple
    U.make_session(num_cpu=1).__enter__()
    set_global_seeds(seed)
    env = gym.make(env_id)
    def policy_fn(name, ob_space, ac_space):
        return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
            hid_size=64, num_hid_layers=2)
    env = bench.Monitor(env, logger.get_dir())
    env.seed(seed)
    gym.logger.setLevel(logging.WARN)
    pposgd_simple.learn(env, policy_fn,
            max_timesteps=num_timesteps,
            timesteps_per_actorbatch=2048,
            clip_param=0.2, entcoeff=0.0,
            optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=64,
            gamma=0.99, lam=0.95, schedule='linear',
        )
    env.close() 
開發者ID:cxxgtxy,項目名稱:deeprl-baselines,代碼行數:21,代碼來源:run_mujoco.py

示例5: train

# 需要導入模塊: from baselines.ppo1 import mlp_policy [as 別名]
# 或者: from baselines.ppo1.mlp_policy import MlpPolicy [as 別名]
def train(env_id, num_timesteps, seed):
    from baselines.ppo1 import mlp_policy, pposgd_simple
    U.make_session(num_cpu=1).__enter__()
    def policy_fn(name, ob_space, ac_space):
        return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
            hid_size=64, num_hid_layers=2)
    env = make_mujoco_env(env_id, seed)
    pposgd_simple.learn(env, policy_fn,
            max_timesteps=num_timesteps,
            timesteps_per_actorbatch=2048,
            clip_param=0.2, entcoeff=0.0,
            optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=64,
            gamma=0.99, lam=0.95, schedule='linear',
        )
    env.close() 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:17,代碼來源:run_mujoco.py

示例6: train

# 需要導入模塊: from baselines.ppo1 import mlp_policy [as 別名]
# 或者: from baselines.ppo1.mlp_policy import MlpPolicy [as 別名]
def train(num_timesteps, seed, model_path=None):
    env_id = 'Humanoid-v2'
    from baselines.ppo1 import mlp_policy, pposgd_simple
    U.make_session(num_cpu=1).__enter__()
    def policy_fn(name, ob_space, ac_space):
        return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
            hid_size=64, num_hid_layers=2)
    env = make_mujoco_env(env_id, seed)

    # parameters below were the best found in a simple random search
    # these are good enough to make humanoid walk, but whether those are
    # an absolute best or not is not certain
    env = RewScale(env, 0.1)
    pi = pposgd_simple.learn(env, policy_fn,
            max_timesteps=num_timesteps,
            timesteps_per_actorbatch=2048,
            clip_param=0.2, entcoeff=0.0,
            optim_epochs=10, 
            optim_stepsize=3e-4, 
            optim_batchsize=64, 
            gamma=0.99, 
            lam=0.95,
            schedule='linear',
        )
    env.close()
    if model_path:
        U.save_state(model_path)
        
    return pi 
開發者ID:MaxSobolMark,項目名稱:HardRLWithYoutube,代碼行數:31,代碼來源:run_humanoid.py

示例7: train

# 需要導入模塊: from baselines.ppo1 import mlp_policy [as 別名]
# 或者: from baselines.ppo1.mlp_policy import MlpPolicy [as 別名]
def train(num_timesteps, seed, model_path=None):
    env_id = 'Humanoid-v2'
    from baselines.ppo1 import mlp_policy, pposgd_simple
    U.make_session(num_cpu=1).__enter__()
    def policy_fn(name, ob_space, ac_space):
        return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
            hid_size=64, num_hid_layers=2)
    env = make_mujoco_env(env_id, seed)

    # parameters below were the best found in a simple random search
    # these are good enough to make humanoid walk, but whether those are
    # an absolute best or not is not certain
    env = RewScale(env, 0.1)
    pi = pposgd_simple.learn(env, policy_fn,
            max_timesteps=num_timesteps,
            timesteps_per_actorbatch=2048,
            clip_param=0.2, entcoeff=0.0,
            optim_epochs=10,
            optim_stepsize=3e-4,
            optim_batchsize=64,
            gamma=0.99,
            lam=0.95,
            schedule='linear',
        )
    env.close()
    if model_path:
        U.save_state(model_path)

    return pi 
開發者ID:hiwonjoon,項目名稱:ICML2019-TREX,代碼行數:31,代碼來源:run_humanoid.py

示例8: train

# 需要導入模塊: from baselines.ppo1 import mlp_policy [as 別名]
# 或者: from baselines.ppo1.mlp_policy import MlpPolicy [as 別名]
def train(num_timesteps, seed, model_path=None):
    env_id = 'Humanoid-v2'
    from baselines.ppo1 import mlp_policy, pposgd_simple
    U.make_session(num_cpu=1).__enter__()
    def policy_fn(name, ob_space, ac_space):
        return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
            hid_size=64, num_hid_layers=2)
    env = make_mujoco_env(env_id, seed)

    # parameters below were the best found in a simple random search
    # these are good enough to make humanoid walk, but whether those are
    # an absolute best or not is not certain
    env = RewScale(env, 0.1)
    logger.log("NOTE: reward will be scaled by a factor of 10  in logged stats. Check the monitor for unscaled reward.")
    pi = pposgd_simple.learn(env, policy_fn,
            max_timesteps=num_timesteps,
            timesteps_per_actorbatch=2048,
            clip_param=0.1, entcoeff=0.0,
            optim_epochs=10,
            optim_stepsize=1e-4,
            optim_batchsize=64,
            gamma=0.99,
            lam=0.95,
            schedule='constant',
        )
    env.close()
    if model_path:
        U.save_state(model_path)

    return pi 
開發者ID:openai,項目名稱:baselines,代碼行數:32,代碼來源:run_humanoid.py

示例9: train

# 需要導入模塊: from baselines.ppo1 import mlp_policy [as 別名]
# 或者: from baselines.ppo1.mlp_policy import MlpPolicy [as 別名]
def train(env_id, num_timesteps, seed):
    import baselines.common.tf_util as U
    sess = U.single_threaded_session()
    sess.__enter__()
    workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
    def policy_fn(name, ob_space, ac_space):
        return MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
            hid_size=32, num_hid_layers=2)

    # Create a new base directory like /tmp/openai-2018-05-21-12-27-22-552435
    log_dir = os.path.join(energyplus_logbase_dir(), datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f"))
    if not os.path.exists(log_dir + '/output'):
        os.makedirs(log_dir + '/output')
    os.environ["ENERGYPLUS_LOG"] = log_dir
    model = os.getenv('ENERGYPLUS_MODEL')
    if model is None:
        print('Environment variable ENERGYPLUS_MODEL is not defined')
        os.exit()
    weather = os.getenv('ENERGYPLUS_WEATHER')
    if weather is None:
        print('Environment variable ENERGYPLUS_WEATHER is not defined')
        os.exit()

    rank = MPI.COMM_WORLD.Get_rank()
    if rank == 0:
        print('train: init logger with dir={}'.format(log_dir)) #XXX
        logger.configure(log_dir)
    else:
        logger.configure(format_strs=[])
        logger.set_level(logger.DISABLED)

    env = make_energyplus_env(env_id, workerseed)

    trpo_mpi.learn(env, policy_fn,
                   max_timesteps=num_timesteps,
                   #timesteps_per_batch=1*1024, max_kl=0.01, cg_iters=10, cg_damping=0.1,
                   timesteps_per_batch=16*1024, max_kl=0.01, cg_iters=10, cg_damping=0.1,
                   gamma=0.99, lam=0.98, vf_iters=5, vf_stepsize=1e-3)
    env.close() 
開發者ID:IBM,項目名稱:rl-testbed-for-energyplus,代碼行數:41,代碼來源:run_energyplus.py

示例10: main

# 需要導入模塊: from baselines.ppo1 import mlp_policy [as 別名]
# 或者: from baselines.ppo1.mlp_policy import MlpPolicy [as 別名]
def main():
    # use fixed random state
    rand_state = np.random.RandomState(1).get_state()
    np.random.set_state(rand_state)
    tf_set_seeds(np.random.randint(1, 2**31 - 1))

    # Create the Create2 docker environment
    env = Create2DockerEnv(30, port='/dev/ttyUSB0', ir_window=20, ir_history=1,
                           obs_history=1, dt=0.045, random_state=rand_state)
    env = NormalizedEnv(env)

    # Start environment processes
    env.start()

    # Create baselines TRPO policy function
    sess = U.single_threaded_session()
    sess.__enter__()
    def policy_fn(name, ob_space, ac_space):
        return MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
            hid_size=32, num_hid_layers=2)

    # Create and start plotting process
    plot_running = Value('i', 1)
    shared_returns = Manager().dict({"write_lock": False,
                                     "episodic_returns": [],
                                     "episodic_lengths": [], })
    # Spawn plotting process
    pp = Process(target=plot_create2_docker, args=(env, 2048, shared_returns, plot_running))
    pp.start()

    # Create callback function for logging data from baselines TRPO learn
    kindred_callback = create_callback(shared_returns)

    # Train baselines TRPO
    learn(env, policy_fn,
          max_timesteps=40000,
          timesteps_per_batch=2048,
          max_kl=0.05,
          cg_iters=10,
          cg_damping=0.1,
          vf_iters=5,
          vf_stepsize=0.001,
          gamma=0.995,
          lam=0.995,
          callback=kindred_callback
          )

    # Safely terminate plotter process
    plot_running.value = 0  # shutdown ploting process
    time.sleep(2)
    pp.join()

    env.close() 
開發者ID:kindredresearch,項目名稱:SenseAct,代碼行數:55,代碼來源:create2_docker.py

示例11: main

# 需要導入模塊: from baselines.ppo1 import mlp_policy [as 別名]
# 或者: from baselines.ppo1.mlp_policy import MlpPolicy [as 別名]
def main():
    # use fixed random state
    rand_state = np.random.RandomState(1).get_state()
    np.random.set_state(rand_state)
    tf_set_seeds(np.random.randint(1, 2**31 - 1))

    # Create the Create2 mover environment
    env = Create2MoverEnv(90, port='/dev/ttyUSB0', obs_history=1, dt=0.15, random_state=rand_state)
    env = NormalizedEnv(env)

    # Start environment processes
    env.start()

    # Create baselines TRPO policy function
    sess = U.single_threaded_session()
    sess.__enter__()
    def policy_fn(name, ob_space, ac_space):
        return MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
            hid_size=32, num_hid_layers=2)

    # Create and start plotting process
    plot_running = Value('i', 1)
    shared_returns = Manager().dict({"write_lock": False,
                                     "episodic_returns": [],
                                     "episodic_lengths": [], })
    # Spawn plotting process
    pp = Process(target=plot_create2_mover, args=(env, 2048, shared_returns, plot_running))
    pp.start()

    # Create callback function for logging data from baselines TRPO learn
    kindred_callback = create_callback(shared_returns)

    # Train baselines TRPO
    learn(env, policy_fn,
          max_timesteps=40000,
          timesteps_per_batch=2048,
          max_kl=0.05,
          cg_iters=10,
          cg_damping=0.1,
          vf_iters=5,
          vf_stepsize=0.001,
          gamma=0.995,
          lam=0.995,
          callback=kindred_callback
          )

    # Safely terminate plotter process
    plot_running.value = 0  # shutdown ploting process
    time.sleep(2)
    pp.join()

    env.close() 
開發者ID:kindredresearch,項目名稱:SenseAct,代碼行數:54,代碼來源:create2_mover.py

示例12: main

# 需要導入模塊: from baselines.ppo1 import mlp_policy [as 別名]
# 或者: from baselines.ppo1.mlp_policy import MlpPolicy [as 別名]
def main():
    # use fixed random state
    rand_state = np.random.RandomState(1).get_state()
    np.random.set_state(rand_state)
    tf_set_seeds(np.random.randint(1, 2**31 - 1))

    #Create Asynchronous Simulation of InvertedDoublePendulum-v2 mujoco environment.
    env = DoubleInvertedPendulumEnv(agent_dt=0.005,
                                    sensor_dt=[0.01, 0.0033333],
                                    is_render=False,
                                    random_state=rand_state
                                   )
    # Start environment processes
    env.start()

    # Create baselines ppo policy function
    sess = U.single_threaded_session()
    sess.__enter__()
    def policy_fn(name, ob_space, ac_space):
        return MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
                         hid_size=64, num_hid_layers=2)

    # create and start plotting process
    plot_running = Value('i', 1)
    shared_returns = Manager().dict({"write_lock": False,
                                     "episodic_returns": [],
                                     "episodic_lengths": [], })
    # Plotting process
    pp = Process(target=plot_returns, args=(env, 2048, shared_returns, plot_running))
    pp.start()

    # Create callback function for logging data from baselines PPO learn

    kindred_callback = create_callback(shared_returns)

    # Train baselines PPO
    learn(env,
          policy_fn,
          max_timesteps=1e6,
          timesteps_per_actorbatch=2048,
          clip_param=0.2,
          entcoeff=0.0,
          optim_epochs=10,
          optim_stepsize=0.0001,
          optim_batchsize=64,
          gamma=0.995,
          lam=0.995,
          schedule="linear",
          callback=kindred_callback,
         )

    # Safely terminate plotter process
    plot_running.value = 0  # shutdown ploting process
    time.sleep(2)
    pp.join()

    # Shutdown the environment
    env.close() 
開發者ID:kindredresearch,項目名稱:SenseAct,代碼行數:60,代碼來源:sim_double_pendulum.py

示例13: train

# 需要導入模塊: from baselines.ppo1 import mlp_policy [as 別名]
# 或者: from baselines.ppo1.mlp_policy import MlpPolicy [as 別名]
def train(env, num_timesteps, seed, ckpt_dir=None,
          render=False, ckpt_freq=0, restore_dir=None, optim_stepsize=3e-4,
          schedule="linear", gamma=0.99, optim_epochs=10, optim_batchsize=64,
          horizon=2048):

    from baselines.common.fc_learning_utils import FlightLog
    from mpi4py import MPI
    from baselines import logger
    from baselines.ppo1.mlp_policy import MlpPolicy
    from baselines.common import set_global_seeds
    from baselines.ppo1 import pposgd_simple
    import baselines.common.tf_util as U
    sess = U.single_threaded_session()
    sess.__enter__()

    rank = MPI.COMM_WORLD.Get_rank()
    if rank == 0:
        logger.configure()
    else:
        logger.configure(format_strs=[])
    logger.set_level(logger.DISABLED)
    workerseed = seed + 1000000 * rank
    def policy_fn(name, ob_space, ac_space):
        return MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
                         hid_size=32, num_hid_layers=2)
    if render:
        env.render()
    env.seed(workerseed)
    set_global_seeds(workerseed)
    pposgd_simple.learn(env, policy_fn,
                        max_timesteps=num_timesteps,
                        timesteps_per_actorbatch=horizon,
                        clip_param=0.2, entcoeff=0.0,
                        optim_epochs=optim_epochs,
                        optim_stepsize=optim_stepsize,
                        optim_batchsize=optim_batchsize,
                        gamma=0.99, lam=0.95, schedule=schedule,
                        flight_log = None,
                        ckpt_dir = ckpt_dir,
                        restore_dir = restore_dir,
                        save_timestep_period= ckpt_freq
                        )
    env.close() 
開發者ID:wil3,項目名稱:gymfc,代碼行數:45,代碼來源:ppo_baselines_train.py


注:本文中的baselines.ppo1.mlp_policy.MlpPolicy方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。