當前位置: 首頁>>代碼示例>>Python>>正文


Python mujoco_dset.Mujoco_Dset方法代碼示例

本文整理匯總了Python中baselines.gail.dataset.mujoco_dset.Mujoco_Dset方法的典型用法代碼示例。如果您正苦於以下問題:Python mujoco_dset.Mujoco_Dset方法的具體用法?Python mujoco_dset.Mujoco_Dset怎麽用?Python mujoco_dset.Mujoco_Dset使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在baselines.gail.dataset.mujoco_dset的用法示例。


在下文中一共展示了mujoco_dset.Mujoco_Dset方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: load_dataset

# 需要導入模塊: from baselines.gail.dataset import mujoco_dset [as 別名]
# 或者: from baselines.gail.dataset.mujoco_dset import Mujoco_Dset [as 別名]
def load_dataset(expert_path):
    dataset = Mujoco_Dset(expert_path=expert_path)
    return dataset 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:5,代碼來源:gail-eval.py

示例2: main

# 需要導入模塊: from baselines.gail.dataset import mujoco_dset [as 別名]
# 或者: from baselines.gail.dataset.mujoco_dset import Mujoco_Dset [as 別名]
def main(args):
    U.make_session(num_cpu=1).__enter__()
    set_global_seeds(args.seed)
    env = gym.make(args.env_id)

    def policy_fn(name, ob_space, ac_space, reuse=False):
        return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
                                    reuse=reuse, hid_size=args.policy_hidden_size, num_hid_layers=2)
    env = bench.Monitor(env, logger.get_dir() and
                        osp.join(logger.get_dir(), "monitor.json"))
    env.seed(args.seed)
    gym.logger.setLevel(logging.WARN)
    task_name = get_task_name(args)
    args.checkpoint_dir = osp.join(args.checkpoint_dir, task_name)
    args.log_dir = osp.join(args.log_dir, task_name)
    dataset = Mujoco_Dset(expert_path=args.expert_path, traj_limitation=args.traj_limitation)
    savedir_fname = learn(env,
                          policy_fn,
                          dataset,
                          max_iters=args.BC_max_iter,
                          ckpt_dir=args.checkpoint_dir,
                          log_dir=args.log_dir,
                          task_name=task_name,
                          verbose=True)
    avg_len, avg_ret = runner(env,
                              policy_fn,
                              savedir_fname,
                              timesteps_per_batch=1024,
                              number_trajs=10,
                              stochastic_policy=args.stochastic_policy,
                              save=args.save_sample,
                              reuse=True) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:34,代碼來源:behavior_clone.py

示例3: main

# 需要導入模塊: from baselines.gail.dataset import mujoco_dset [as 別名]
# 或者: from baselines.gail.dataset.mujoco_dset import Mujoco_Dset [as 別名]
def main(args):
    U.make_session(num_cpu=1).__enter__()
    set_global_seeds(args.seed)
    env = gym.make(args.env_id)

    def policy_fn(name, ob_space, ac_space, reuse=False):
        return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
                                    reuse=reuse, hid_size=args.policy_hidden_size, num_hid_layers=2)
    env = bench.Monitor(env, logger.get_dir() and
                        osp.join(logger.get_dir(), "monitor.json"))
    env.seed(args.seed)
    gym.logger.setLevel(logging.WARN)
    task_name = get_task_name(args)
    args.checkpoint_dir = osp.join(args.checkpoint_dir, task_name)
    args.log_dir = osp.join(args.log_dir, task_name)

    if args.task == 'train':
        dataset = Mujoco_Dset(expert_path=args.expert_path, traj_limitation=args.traj_limitation)
        reward_giver = TransitionClassifier(env, args.adversary_hidden_size, entcoeff=args.adversary_entcoeff)
        train(env,
              args.seed,
              policy_fn,
              reward_giver,
              dataset,
              args.algo,
              args.g_step,
              args.d_step,
              args.policy_entcoeff,
              args.num_timesteps,
              args.save_per_iter,
              args.checkpoint_dir,
              args.log_dir,
              args.pretrained,
              args.BC_max_iter,
              task_name
              )
    elif args.task == 'evaluate':
        runner(env,
               policy_fn,
               args.load_model_path,
               timesteps_per_batch=1024,
               number_trajs=10,
               stochastic_policy=args.stochastic_policy,
               save=args.save_sample
               )
    else:
        raise NotImplementedError
    env.close() 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:50,代碼來源:run_mujoco.py


注:本文中的baselines.gail.dataset.mujoco_dset.Mujoco_Dset方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。