當前位置: 首頁>>代碼示例>>Python>>正文


Python tf_util.make_session方法代碼示例

本文整理匯總了Python中baselines.common.tf_util.make_session方法的典型用法代碼示例。如果您正苦於以下問題:Python tf_util.make_session方法的具體用法?Python tf_util.make_session怎麽用?Python tf_util.make_session使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在baselines.common.tf_util的用法示例。


在下文中一共展示了tf_util.make_session方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: train

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import make_session [as 別名]
def train(env_id, num_timesteps, seed):
    from baselines.pposgd import mlp_policy, pposgd_simple
    U.make_session(num_cpu=1).__enter__()
    logger.session().__enter__()
    set_global_seeds(seed)
    env = gym.make(env_id)
    def policy_fn(name, ob_space, ac_space):
        return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
            hid_size=64, num_hid_layers=2)
    env = bench.Monitor(env, osp.join(logger.get_dir(), "monitor.json"))
    env.seed(seed)
    gym.logger.setLevel(logging.WARN)
    pposgd_simple.learn(env, policy_fn, 
            max_timesteps=num_timesteps,
            timesteps_per_batch=2048,
            clip_param=0.2, entcoeff=0.0,
            optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=64,
            gamma=0.99, lam=0.95,
        )
    env.close() 
開發者ID:AdamStelmaszczyk,項目名稱:learning2run,代碼行數:22,代碼來源:run_mujoco.py

示例2: test_microbatches

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import make_session [as 別名]
def test_microbatches():
    def env_fn():
        env = gym.make('CartPole-v0')
        env.seed(0)
        return env

    learn_fn = partial(learn, network='mlp', nsteps=32, total_timesteps=32, seed=0)

    env_ref = DummyVecEnv([env_fn])
    sess_ref = make_session(make_default=True, graph=tf.Graph())
    learn_fn(env=env_ref)
    vars_ref = {v.name: sess_ref.run(v) for v in tf.trainable_variables()}

    env_test = DummyVecEnv([env_fn])
    sess_test = make_session(make_default=True, graph=tf.Graph())
    learn_fn(env=env_test, model_fn=partial(MicrobatchedModel, microbatch_size=2))
    vars_test = {v.name: sess_test.run(v) for v in tf.trainable_variables()}

    for v in vars_ref:
        np.testing.assert_allclose(vars_ref[v], vars_test[v], atol=1e-3) 
開發者ID:hiwonjoon,項目名稱:ICML2019-TREX,代碼行數:22,代碼來源:test_microbatches.py

示例3: test_microbatches

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import make_session [as 別名]
def test_microbatches():
    def env_fn():
        env = gym.make('CartPole-v0')
        env.seed(0)
        return env

    learn_fn = partial(learn, network='mlp', nsteps=32, total_timesteps=32, seed=0)

    env_ref = DummyVecEnv([env_fn])
    sess_ref = make_session(make_default=True, graph=tf.Graph())
    learn_fn(env=env_ref)
    vars_ref = {v.name: sess_ref.run(v) for v in tf.trainable_variables()}

    env_test = DummyVecEnv([env_fn])
    sess_test = make_session(make_default=True, graph=tf.Graph())
    learn_fn(env=env_test, model_fn=partial(MicrobatchedModel, microbatch_size=2))
    # learn_fn(env=env_test)
    vars_test = {v.name: sess_test.run(v) for v in tf.trainable_variables()}

    for v in vars_ref:
        np.testing.assert_allclose(vars_ref[v], vars_test[v], atol=3e-3) 
開發者ID:openai,項目名稱:baselines,代碼行數:23,代碼來源:test_microbatches.py

示例4: train

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import make_session [as 別名]
def train(env_id, num_timesteps, seed):
    from baselines.ppo1 import mlp_policy, pposgd_simple
    U.make_session(num_cpu=1).__enter__()
    set_global_seeds(seed)
    env = gym.make(env_id)
    def policy_fn(name, ob_space, ac_space):
        return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
            hid_size=64, num_hid_layers=2)
    env = bench.Monitor(env, logger.get_dir())
    env.seed(seed)
    gym.logger.setLevel(logging.WARN)
    pposgd_simple.learn(env, policy_fn,
            max_timesteps=num_timesteps,
            timesteps_per_actorbatch=2048,
            clip_param=0.2, entcoeff=0.0,
            optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=64,
            gamma=0.99, lam=0.95, schedule='linear',
        )
    env.close() 
開發者ID:cxxgtxy,項目名稱:deeprl-baselines,代碼行數:21,代碼來源:run_mujoco.py

示例5: main

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import make_session [as 別名]
def main():
    set_global_seeds(1)
    args = parse_args()

    with U.make_session(4) as sess:  # noqa
        _, env = make_env(args.env)
        model_parent_path = distdeepq.parent_path(args.model_dir)
        old_args = json.load(open(model_parent_path + '/args.json'))

        act = distdeepq.build_act(
            make_obs_ph=lambda name: U.Uint8Input(env.observation_space.shape, name=name),
            p_dist_func=distdeepq.models.atari_model(),
            num_actions=env.action_space.n,
            dist_params={'Vmin': old_args['vmin'],
                         'Vmax': old_args['vmax'],
                         'nb_atoms': old_args['nb_atoms']})
        U.load_state(os.path.join(args.model_dir, "saved"))
        wang2015_eval(args.env, act, stochastic=args.stochastic) 
開發者ID:Silvicek,項目名稱:distributional-dqn,代碼行數:20,代碼來源:wang2015_eval.py

示例6: main

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import make_session [as 別名]
def main(args):
    U.make_session(num_cpu=1).__enter__()
    set_global_seeds(args.seed)
    print('Evaluating {}'.format(args.env))
    bc_log = evaluate_env(args.env, args.seed, args.policy_hidden_size,
                          args.stochastic_policy, False, 'BC')
    print('Evaluation for {}'.format(args.env))
    print(bc_log)
    gail_log = evaluate_env(args.env, args.seed, args.policy_hidden_size,
                            args.stochastic_policy, True, 'gail')
    print('Evaluation for {}'.format(args.env))
    print(gail_log)
    plot(args.env, bc_log, gail_log, args.stochastic_policy) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:15,代碼來源:gail-eval.py

示例7: main

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import make_session [as 別名]
def main(args):
    U.make_session(num_cpu=1).__enter__()
    set_global_seeds(args.seed)
    env = gym.make(args.env_id)

    def policy_fn(name, ob_space, ac_space, reuse=False):
        return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
                                    reuse=reuse, hid_size=args.policy_hidden_size, num_hid_layers=2)
    env = bench.Monitor(env, logger.get_dir() and
                        osp.join(logger.get_dir(), "monitor.json"))
    env.seed(args.seed)
    gym.logger.setLevel(logging.WARN)
    task_name = get_task_name(args)
    args.checkpoint_dir = osp.join(args.checkpoint_dir, task_name)
    args.log_dir = osp.join(args.log_dir, task_name)
    dataset = Mujoco_Dset(expert_path=args.expert_path, traj_limitation=args.traj_limitation)
    savedir_fname = learn(env,
                          policy_fn,
                          dataset,
                          max_iters=args.BC_max_iter,
                          ckpt_dir=args.checkpoint_dir,
                          log_dir=args.log_dir,
                          task_name=task_name,
                          verbose=True)
    avg_len, avg_ret = runner(env,
                              policy_fn,
                              savedir_fname,
                              timesteps_per_batch=1024,
                              number_trajs=10,
                              stochastic_policy=args.stochastic_policy,
                              save=args.save_sample,
                              reuse=True) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:34,代碼來源:behavior_clone.py

示例8: train

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import make_session [as 別名]
def train(env_id, num_timesteps, seed):
    from baselines.ppo1 import mlp_policy, pposgd_simple
    U.make_session(num_cpu=1).__enter__()
    def policy_fn(name, ob_space, ac_space):
        return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
            hid_size=64, num_hid_layers=2)
    env = make_mujoco_env(env_id, seed)
    pposgd_simple.learn(env, policy_fn,
            max_timesteps=num_timesteps,
            timesteps_per_actorbatch=2048,
            clip_param=0.2, entcoeff=0.0,
            optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=64,
            gamma=0.99, lam=0.95, schedule='linear',
        )
    env.close() 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:17,代碼來源:run_mujoco.py

示例9: train

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import make_session [as 別名]
def train(num_timesteps, seed, model_path=None):
    env_id = 'Humanoid-v2'
    from baselines.ppo1 import mlp_policy, pposgd_simple
    U.make_session(num_cpu=1).__enter__()
    def policy_fn(name, ob_space, ac_space):
        return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
            hid_size=64, num_hid_layers=2)
    env = make_mujoco_env(env_id, seed)

    # parameters below were the best found in a simple random search
    # these are good enough to make humanoid walk, but whether those are
    # an absolute best or not is not certain
    env = RewScale(env, 0.1)
    pi = pposgd_simple.learn(env, policy_fn,
            max_timesteps=num_timesteps,
            timesteps_per_actorbatch=2048,
            clip_param=0.2, entcoeff=0.0,
            optim_epochs=10, 
            optim_stepsize=3e-4, 
            optim_batchsize=64, 
            gamma=0.99, 
            lam=0.95,
            schedule='linear',
        )
    env.close()
    if model_path:
        U.save_state(model_path)
        
    return pi 
開發者ID:MaxSobolMark,項目名稱:HardRLWithYoutube,代碼行數:31,代碼來源:run_humanoid.py

示例10: test_coexistence

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import make_session [as 別名]
def test_coexistence(learn_fn, network_fn):
    '''
    Test if more than one model can exist at a time
    '''

    if learn_fn == 'deepq':
            # TODO enable multiple DQN models to be useable at the same time
            # github issue https://github.com/openai/baselines/issues/656
            return

    if network_fn.endswith('lstm') and learn_fn in ['acktr', 'trpo_mpi', 'deepq']:
            # TODO make acktr work with recurrent policies
            # and test
            # github issue: https://github.com/openai/baselines/issues/660
            return

    env = DummyVecEnv([lambda: gym.make('CartPole-v0')])
    learn = get_learn_function(learn_fn)

    kwargs = {}
    kwargs.update(network_kwargs[network_fn])
    kwargs.update(learn_kwargs[learn_fn])

    learn =  partial(learn, env=env, network=network_fn, total_timesteps=0, **kwargs)
    make_session(make_default=True, graph=tf.Graph());
    model1 = learn(seed=1)
    make_session(make_default=True, graph=tf.Graph());
    model2 = learn(seed=2)

    model1.step(env.observation_space.sample())
    model2.step(env.observation_space.sample()) 
開發者ID:quantumiracle,項目名稱:Reinforcement_Learning_for_Traffic_Light_Control,代碼行數:33,代碼來源:test_serialization.py

示例11: main

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import make_session [as 別名]
def main():
    set_global_seeds(1)
    args = parse_args()
    with U.make_session(4) as sess:  # noqa
        _, env = make_env(args.env)
        act = deepq.build_act(
            make_obs_ph=lambda name: U.Uint8Input(env.observation_space.shape, name=name),
            q_func=dueling_model if args.dueling else model,
            num_actions=env.action_space.n)

        U.load_state(os.path.join(args.model_dir, "saved"))
        wang2015_eval(args.env, act, stochastic=args.stochastic) 
開發者ID:AdamStelmaszczyk,項目名稱:learning2run,代碼行數:14,代碼來源:wang2015_eval.py

示例12: load

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import make_session [as 別名]
def load(path, num_cpu=16):
        with open(path, "rb") as f:
            model_data, act_params = dill.load(f)
        act = deepq.build_act(**act_params)
        sess = U.make_session(num_cpu=num_cpu)
        sess.__enter__()
        with tempfile.TemporaryDirectory() as td:
            arc_path = os.path.join(td, "packed.zip")
            with open(arc_path, "wb") as f:
                f.write(model_data)

            zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td)
            U.load_state(os.path.join(td, "model"))

        return ActWrapper(act, act_params) 
開發者ID:AdamStelmaszczyk,項目名稱:learning2run,代碼行數:17,代碼來源:simple.py

示例13: train

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import make_session [as 別名]
def train(num_timesteps, seed, model_path=None):
    env_id = 'Humanoid-v2'
    from baselines.ppo1 import mlp_policy, pposgd_simple
    U.make_session(num_cpu=1).__enter__()
    def policy_fn(name, ob_space, ac_space):
        return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
            hid_size=64, num_hid_layers=2)
    env = make_mujoco_env(env_id, seed)

    # parameters below were the best found in a simple random search
    # these are good enough to make humanoid walk, but whether those are
    # an absolute best or not is not certain
    env = RewScale(env, 0.1)
    pi = pposgd_simple.learn(env, policy_fn,
            max_timesteps=num_timesteps,
            timesteps_per_actorbatch=2048,
            clip_param=0.2, entcoeff=0.0,
            optim_epochs=10,
            optim_stepsize=3e-4,
            optim_batchsize=64,
            gamma=0.99,
            lam=0.95,
            schedule='linear',
        )
    env.close()
    if model_path:
        U.save_state(model_path)

    return pi 
開發者ID:hiwonjoon,項目名稱:ICML2019-TREX,代碼行數:31,代碼來源:run_humanoid.py

示例14: test_coexistence

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import make_session [as 別名]
def test_coexistence(learn_fn, network_fn):
    '''
    Test if more than one model can exist at a time
    '''

    if learn_fn == 'deepq':
            # TODO enable multiple DQN models to be useable at the same time
            # github issue https://github.com/openai/baselines/issues/656
            return

    if network_fn.endswith('lstm') and learn_fn in ['acktr', 'trpo_mpi', 'deepq']:
            # TODO make acktr work with recurrent policies
            # and test
            # github issue: https://github.com/openai/baselines/issues/660
            return

    env = DummyVecEnv([lambda: gym.make('CartPole-v0')])
    learn = get_learn_function(learn_fn)

    kwargs = {}
    kwargs.update(network_kwargs[network_fn])
    kwargs.update(learn_kwargs[learn_fn])

    learn =  partial(learn, env=env, network=network_fn, total_timesteps=0, **kwargs)
    make_session(make_default=True, graph=tf.Graph())
    model1 = learn(seed=1)
    make_session(make_default=True, graph=tf.Graph())
    model2 = learn(seed=2)

    model1.step(env.observation_space.sample())
    model2.step(env.observation_space.sample()) 
開發者ID:hiwonjoon,項目名稱:ICML2019-TREX,代碼行數:33,代碼來源:test_serialization.py


注:本文中的baselines.common.tf_util.make_session方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。