當前位置: 首頁>>代碼示例>>Python>>正文


Python tf_util.get_placeholder方法代碼示例

本文整理匯總了Python中baselines.common.tf_util.get_placeholder方法的典型用法代碼示例。如果您正苦於以下問題:Python tf_util.get_placeholder方法的具體用法?Python tf_util.get_placeholder怎麽用?Python tf_util.get_placeholder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在baselines.common.tf_util的用法示例。


在下文中一共展示了tf_util.get_placeholder方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _init

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import get_placeholder [as 別名]
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True):
        assert isinstance(ob_space, gym.spaces.Box)

        self.pdtype = pdtype = make_pdtype(ac_space)
        sequence_length = None

        ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))

        with tf.variable_scope("obfilter"):
            self.ob_rms = RunningMeanStd(shape=ob_space.shape)

        obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0)
        last_out = obz
        for i in range(num_hid_layers):
            last_out = tf.nn.tanh(dense(last_out, hid_size, "vffc%i" % (i+1), weight_init=U.normc_initializer(1.0)))
        self.vpred = dense(last_out, 1, "vffinal", weight_init=U.normc_initializer(1.0))[:, 0]

        last_out = obz
        for i in range(num_hid_layers):
            last_out = tf.nn.tanh(dense(last_out, hid_size, "polfc%i" % (i+1), weight_init=U.normc_initializer(1.0)))

        if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box):
            mean = dense(last_out, pdtype.param_shape()[0]//2, "polfinal", U.normc_initializer(0.01))
            logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer())
            pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
        else:
            pdparam = dense(last_out, pdtype.param_shape()[0], "polfinal", U.normc_initializer(0.01))

        self.pd = pdtype.pdfromflat(pdparam)

        self.state_in = []
        self.state_out = []

        # change for BC
        stochastic = U.get_placeholder(name="stochastic", dtype=tf.bool, shape=())
        ac = U.switch(stochastic, self.pd.sample(), self.pd.mode())
        self.ac = ac
        self._act = U.function([stochastic, ob], [ac, self.vpred]) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:40,代碼來源:mlp_policy.py

示例2: _init

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import get_placeholder [as 別名]
def _init(self, ob_space, ac_space):
        assert isinstance(ob_space, gym.spaces.Box)

        self.pdtype = pdtype = make_pdtype(ac_space)
        sequence_length = None

        ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))

        obscaled = ob / 255.0

        with tf.variable_scope("pol"):
            x = obscaled
            x = tf.nn.relu(U.conv2d(x, 8, "l1", [8, 8], [4, 4], pad="VALID"))
            x = tf.nn.relu(U.conv2d(x, 16, "l2", [4, 4], [2, 2], pad="VALID"))
            x = U.flattenallbut0(x)
            x = tf.nn.relu(tf.layers.dense(x, 128, name='lin', kernel_initializer=U.normc_initializer(1.0)))
            logits = tf.layers.dense(x, pdtype.param_shape()[0], name='logits', kernel_initializer=U.normc_initializer(0.01))
            self.pd = pdtype.pdfromflat(logits)
        with tf.variable_scope("vf"):
            x = obscaled
            x = tf.nn.relu(U.conv2d(x, 8, "l1", [8, 8], [4, 4], pad="VALID"))
            x = tf.nn.relu(U.conv2d(x, 16, "l2", [4, 4], [2, 2], pad="VALID"))
            x = U.flattenallbut0(x)
            x = tf.nn.relu(tf.layers.dense(x, 128, name='lin', kernel_initializer=U.normc_initializer(1.0)))
            self.vpred = tf.layers.dense(x, 1, name='value', kernel_initializer=U.normc_initializer(1.0))
            self.vpredz = self.vpred

        self.state_in = []
        self.state_out = []

        stochastic = tf.placeholder(dtype=tf.bool, shape=())
        ac = self.pd.sample()
        self._act = U.function([stochastic, ob], [ac, self.vpred]) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:35,代碼來源:nosharing_cnn_policy.py

示例3: _init

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import get_placeholder [as 別名]
def _init(self, ob_space, ac_space, kind):
        assert isinstance(ob_space, gym.spaces.Box)

        self.pdtype = pdtype = make_pdtype(ac_space)
        sequence_length = None

        ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))

        x = ob / 255.0
        if kind == 'small': # from A3C paper
            x = tf.nn.relu(U.conv2d(x, 16, "l1", [8, 8], [4, 4], pad="VALID"))
            x = tf.nn.relu(U.conv2d(x, 32, "l2", [4, 4], [2, 2], pad="VALID"))
            x = U.flattenallbut0(x)
            x = tf.nn.relu(tf.layers.dense(x, 256, name='lin', kernel_initializer=U.normc_initializer(1.0)))
        elif kind == 'large': # Nature DQN
            x = tf.nn.relu(U.conv2d(x, 32, "l1", [8, 8], [4, 4], pad="VALID"))
            x = tf.nn.relu(U.conv2d(x, 64, "l2", [4, 4], [2, 2], pad="VALID"))
            x = tf.nn.relu(U.conv2d(x, 64, "l3", [3, 3], [1, 1], pad="VALID"))
            x = U.flattenallbut0(x)
            x = tf.nn.relu(tf.layers.dense(x, 512, name='lin', kernel_initializer=U.normc_initializer(1.0)))
        else:
            raise NotImplementedError

        logits = tf.layers.dense(x, pdtype.param_shape()[0], name='logits', kernel_initializer=U.normc_initializer(0.01))
        self.pd = pdtype.pdfromflat(logits)
        self.vpred = tf.layers.dense(x, 1, name='value', kernel_initializer=U.normc_initializer(1.0))[:,0]

        self.state_in = []
        self.state_out = []

        stochastic = tf.placeholder(dtype=tf.bool, shape=())
        ac = self.pd.sample() # XXX
        self._act = U.function([stochastic, ob], [ac, self.vpred]) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:35,代碼來源:cnn_policy.py

示例4: _init

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import get_placeholder [as 別名]
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True):
        assert isinstance(ob_space, gym.spaces.Box)

        self.pdtype = pdtype = make_pdtype(ac_space)
        sequence_length = None

        ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))

        with tf.variable_scope("obfilter"):
            self.ob_rms = RunningMeanStd(shape=ob_space.shape)

        with tf.variable_scope('vf'):
            obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0)
            last_out = obz
            for i in range(num_hid_layers):
                last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name="fc%i"%(i+1), kernel_initializer=U.normc_initializer(1.0)))
            self.vpred = tf.layers.dense(last_out, 1, name='final', kernel_initializer=U.normc_initializer(1.0))[:,0]

        with tf.variable_scope('pol'):
            last_out = obz
            for i in range(num_hid_layers):
                last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name='fc%i'%(i+1), kernel_initializer=U.normc_initializer(1.0)))
            if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box):
                mean = tf.layers.dense(last_out, pdtype.param_shape()[0]//2, name='final', kernel_initializer=U.normc_initializer(0.01))
                logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer())
                pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
            else:
                pdparam = tf.layers.dense(last_out, pdtype.param_shape()[0], name='final', kernel_initializer=U.normc_initializer(0.01))

        self.pd = pdtype.pdfromflat(pdparam)

        self.state_in = []
        self.state_out = []

        stochastic = tf.placeholder(dtype=tf.bool, shape=())
        ac = U.switch(stochastic, self.pd.sample(), self.pd.mode())
        self._act = U.function([stochastic, ob], [ac, self.vpred]) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:39,代碼來源:mlp_policy.py

示例5: _init

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import get_placeholder [as 別名]
def _init(self, ob_space, ac_space):
        assert isinstance(ob_space, gym.spaces.Box)

        self.pdtype = pdtype = make_pdtype(ac_space)
        sequence_length = None

        ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))
        
        obscaled = ob / 255.0

        with tf.variable_scope("pol"):
            x = obscaled
            x = tf.nn.relu(U.conv2d(x, 8, "l1", [8, 8], [4, 4], pad="VALID"))
            x = tf.nn.relu(U.conv2d(x, 16, "l2", [4, 4], [2, 2], pad="VALID"))
            x = U.flattenallbut0(x)
            x = tf.nn.relu(U.dense(x, 128, 'lin', U.normc_initializer(1.0)))
            logits = U.dense(x, pdtype.param_shape()[0], "logits", U.normc_initializer(0.01))
            self.pd = pdtype.pdfromflat(logits)
        with tf.variable_scope("vf"):
            x = obscaled
            x = tf.nn.relu(U.conv2d(x, 8, "l1", [8, 8], [4, 4], pad="VALID"))
            x = tf.nn.relu(U.conv2d(x, 16, "l2", [4, 4], [2, 2], pad="VALID"))
            x = U.flattenallbut0(x)
            x = tf.nn.relu(U.dense(x, 128, 'lin', U.normc_initializer(1.0)))
            self.vpred = U.dense(x, 1, "value", U.normc_initializer(1.0))
            self.vpredz = self.vpred

        self.state_in = []
        self.state_out = []

        stochastic = tf.placeholder(dtype=tf.bool, shape=())
        ac = self.pd.sample() # XXX
        self._act = U.function([stochastic, ob], [ac, self.vpred]) 
開發者ID:AdamStelmaszczyk,項目名稱:learning2run,代碼行數:35,代碼來源:nosharing_cnn_policy.py

示例6: _init

# 需要導入模塊: from baselines.common import tf_util [as 別名]
# 或者: from baselines.common.tf_util import get_placeholder [as 別名]
def _init(self, ob_space, ac_space, kind):
        assert isinstance(ob_space, gym.spaces.Box)

        self.pdtype = pdtype = make_pdtype(ac_space)
        sequence_length = None

        ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))
    
        x = ob / 255.0
        if kind == 'small': # from A3C paper
            x = tf.nn.relu(U.conv2d(x, 16, "l1", [8, 8], [4, 4], pad="VALID"))
            x = tf.nn.relu(U.conv2d(x, 32, "l2", [4, 4], [2, 2], pad="VALID"))
            x = U.flattenallbut0(x)
            x = tf.nn.relu(U.dense(x, 256, 'lin', U.normc_initializer(1.0)))
        elif kind == 'large': # Nature DQN
            x = tf.nn.relu(U.conv2d(x, 32, "l1", [8, 8], [4, 4], pad="VALID"))
            x = tf.nn.relu(U.conv2d(x, 64, "l2", [4, 4], [2, 2], pad="VALID"))
            x = tf.nn.relu(U.conv2d(x, 64, "l3", [3, 3], [1, 1], pad="VALID"))
            x = U.flattenallbut0(x)
            x = tf.nn.relu(U.dense(x, 512, 'lin', U.normc_initializer(1.0)))
        else:
            raise NotImplementedError

        logits = U.dense(x, pdtype.param_shape()[0], "logits", U.normc_initializer(0.01))
        self.pd = pdtype.pdfromflat(logits)
        self.vpred = U.dense(x, 1, "value", U.normc_initializer(1.0))[:,0]

        self.state_in = []
        self.state_out = []

        stochastic = tf.placeholder(dtype=tf.bool, shape=())
        ac = self.pd.sample() # XXX
        self._act = U.function([stochastic, ob], [ac, self.vpred]) 
開發者ID:AdamStelmaszczyk,項目名稱:learning2run,代碼行數:35,代碼來源:cnn_policy.py


注:本文中的baselines.common.tf_util.get_placeholder方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。