當前位置: 首頁>>代碼示例>>Python>>正文


Python common.explained_variance方法代碼示例

本文整理匯總了Python中baselines.common.explained_variance方法的典型用法代碼示例。如果您正苦於以下問題:Python common.explained_variance方法的具體用法?Python common.explained_variance怎麽用?Python common.explained_variance使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在baselines.common的用法示例。


在下文中一共展示了common.explained_variance方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fit

# 需要導入模塊: from baselines import common [as 別名]
# 或者: from baselines.common import explained_variance [as 別名]
def fit(self, paths, targvals):
        X = np.concatenate([self._preproc(p) for p in paths])
        y = np.concatenate(targvals)
        logger.record_tabular("EVBefore", common.explained_variance(self._predict(X), y))
        for _ in range(25): self.do_update(X, y)
        logger.record_tabular("EVAfter", common.explained_variance(self._predict(X), y)) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:8,代碼來源:value_functions.py

示例2: learn

# 需要導入模塊: from baselines import common [as 別名]
# 或者: from baselines.common import explained_variance [as 別名]
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100):
    tf.reset_default_graph()
    set_global_seeds(seed)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
        max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule)
    runner = Runner(env, model, nsteps=nsteps, gamma=gamma)

    nbatch = nenvs*nsteps
    tstart = time.time()
    for update in range(1, total_timesteps//nbatch+1):
        obs, states, rewards, masks, actions, values = runner.run()
        policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values)
        nseconds = time.time()-tstart
        fps = int((update*nbatch)/nseconds)
        if update % log_interval == 0 or update == 1:
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.dump_tabular()
    env.close() 
開發者ID:bowenliu16,項目名稱:rl_graph_generation,代碼行數:30,代碼來源:a2c.py

示例3: learn

# 需要導入模塊: from baselines import common [as 別名]
# 或者: from baselines.common import explained_variance [as 別名]
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100):
    set_global_seeds(seed)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
        max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule)
    runner = Runner(env, model, nsteps=nsteps, gamma=gamma)

    nbatch = nenvs*nsteps
    tstart = time.time()
    for update in range(1, total_timesteps//nbatch+1):
        obs, states, rewards, masks, actions, values = runner.run()
        policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values)
        nseconds = time.time()-tstart
        fps = int((update*nbatch)/nseconds)
        if update % log_interval == 0 or update == 1:
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.dump_tabular()
    env.close()
    return model 
開發者ID:junhyukoh,項目名稱:self-imitation-learning,代碼行數:30,代碼來源:a2c.py

示例4: learn

# 需要導入模塊: from baselines import common [as 別名]
# 或者: from baselines.common import explained_variance [as 別名]
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100, sil_update=4, sil_beta=0.0):
    set_global_seeds(seed)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
        max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule, sil_update=sil_update, sil_beta=sil_beta)
    runner = Runner(env, model, nsteps=nsteps, gamma=gamma)

    episode_stats = EpisodeStats(nsteps, nenvs)
    nbatch = nenvs*nsteps
    tstart = time.time()
    for update in range(1, total_timesteps//nbatch+1):
        obs, states, rewards, masks, actions, values, raw_rewards = runner.run()
        episode_stats.feed(raw_rewards, masks)
        policy_loss, value_loss, policy_entropy, v_avg = model.train(obs, states, rewards, masks, actions, values)
        sil_loss, sil_adv, sil_samples, sil_nlogp = model.sil_train()
        nseconds = time.time()-tstart
        fps = int((update*nbatch)/nseconds)
        if update % log_interval == 0 or update == 1:
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.record_tabular("episode_reward", episode_stats.mean_reward())
            logger.record_tabular("best_episode_reward", float(model.sil.get_best_reward()))
            if sil_update > 0:
                logger.record_tabular("sil_num_episodes", float(model.sil.num_episodes()))
                logger.record_tabular("sil_valid_samples", float(sil_samples))
                logger.record_tabular("sil_steps", float(model.sil.num_steps()))
            logger.dump_tabular()
    env.close()
    return model 
開發者ID:junhyukoh,項目名稱:self-imitation-learning,代碼行數:39,代碼來源:a2c_sil.py

示例5: learn

# 需要導入模塊: from baselines import common [as 別名]
# 或者: from baselines.common import explained_variance [as 別名]
def learn(policy, env, seed, nsteps=5, nstack=4, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100):
    tf.reset_default_graph()
    set_global_seeds(seed)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    num_procs = len(env.remotes) # HACK
    model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, nstack=nstack, num_procs=num_procs, ent_coef=ent_coef, vf_coef=vf_coef,
        max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule)
    runner = Runner(env, model, nsteps=nsteps, nstack=nstack, gamma=gamma)

    nbatch = nenvs*nsteps
    tstart = time.time()
    for update in range(1, total_timesteps//nbatch+1):
        obs, states, rewards, masks, actions, values = runner.run()
        policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values)
        nseconds = time.time()-tstart
        fps = int((update*nbatch)/nseconds)
        if update % log_interval == 0 or update == 1:
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.dump_tabular()
    env.close() 
開發者ID:cxxgtxy,項目名稱:deeprl-baselines,代碼行數:31,代碼來源:a2c.py

示例6: learn

# 需要導入模塊: from baselines import common [as 別名]
# 或者: from baselines.common import explained_variance [as 別名]
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), v_mix_coef=0.5, ent_coef=0.01, max_grad_norm=0.5,
          lr_alpha=7e-4, lr_beta=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100,
          v_ex_coef=1.0, r_ex_coef=0.0, r_in_coef=1.0):
    tf.reset_default_graph()
    set_global_seeds(seed)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef,
                  v_ex_coef=v_ex_coef, max_grad_norm=max_grad_norm, lr_alpha=lr_alpha, lr_beta=lr_beta,
                  alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule,
                  v_mix_coef=v_mix_coef, r_ex_coef=r_ex_coef, r_in_coef=r_in_coef)
    runner = Runner(env, model, nsteps=nsteps, gamma=gamma, r_ex_coef=r_ex_coef, r_in_coef=r_in_coef)

    nbatch = nenvs*nsteps
    tstart = time.time()
    epinfobuf = deque(maxlen=100)
    eprexbuf = deque(maxlen=100)
    eprinbuf = deque(maxlen=100)
    eplenbuf = deque(maxlen=100)
    for update in range(1, total_timesteps//nbatch+1):
        obs, ac, policy_states, r_in, r_ex, ret_ex, ret_mix, \
        v_ex, v_mix, last_v_ex, last_v_mix, masks, dones, \
        epinfo, ep_r_ex, ep_r_in, ep_len = runner.run()
        dis_v_mix_last = np.zeros([nbatch], np.float32)
        coef_mat = np.zeros([nbatch, nbatch], np.float32)
        for i in range(nbatch):
            dis_v_mix_last[i] = gamma ** (nsteps - i % nsteps) * last_v_mix[i // nsteps]
            coef = 1.0
            for j in range(i, nbatch):
                if j > i and j % nsteps == 0:
                    break
                coef_mat[i][j] = coef
                coef *= gamma
                if dones[j]:
                    dis_v_mix_last[i] = 0
                    break
        entropy = model.train(obs, policy_states[0], masks, ac, r_ex, ret_ex, v_ex, v_mix, dis_v_mix_last, coef_mat)

        nseconds = time.time()-tstart
        fps = int((update*nbatch)/nseconds)
        epinfobuf.extend(epinfo)
        eprexbuf.extend(ep_r_ex)
        eprinbuf.extend(ep_r_in)
        eplenbuf.extend(ep_len)
        if update % log_interval == 0 or update == 1:
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("entropy", float(entropy))
            v_ex_ev = explained_variance(v_ex, ret_ex)
            logger.record_tabular("v_ex_ev", float(v_ex_ev))
            v_mix_ev = explained_variance(v_mix, ret_mix)
            logger.record_tabular("v_mix_ev", float(v_mix_ev))
            logger.record_tabular("gamescoremean", safemean([epinfo['r'] for epinfo in epinfobuf]))
            logger.record_tabular("gamelenmean", safemean([epinfo['l'] for epinfo in epinfobuf]))
            logger.dump_tabular()
    env.close() 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:61,代碼來源:a2c.py

示例7: learn

# 需要導入模塊: from baselines import common [as 別名]
# 或者: from baselines.common import explained_variance [as 別名]
def learn(policy, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20,
                 ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5,
                 kfac_clip=0.001, save_interval=None, lrschedule='linear'):
    tf.reset_default_graph()
    set_global_seeds(seed)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    make_model = lambda : Model(policy, ob_space, ac_space, nenvs, total_timesteps, nprocs=nprocs, nsteps
                                =nsteps, ent_coef=ent_coef, vf_coef=vf_coef, vf_fisher_coef=
                                vf_fisher_coef, lr=lr, max_grad_norm=max_grad_norm, kfac_clip=kfac_clip,
                                lrschedule=lrschedule)
    if save_interval and logger.get_dir():
        import cloudpickle
        with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh:
            fh.write(cloudpickle.dumps(make_model))
    model = make_model()

    runner = Runner(env, model, nsteps=nsteps, gamma=gamma)
    nbatch = nenvs*nsteps
    tstart = time.time()
    coord = tf.train.Coordinator()
    enqueue_threads = model.q_runner.create_threads(model.sess, coord=coord, start=True)
    for update in range(1, total_timesteps//nbatch+1):
        obs, states, rewards, masks, actions, values = runner.run()
        policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values)
        model.old_obs = obs
        nseconds = time.time()-tstart
        fps = int((update*nbatch)/nseconds)
        if update % log_interval == 0 or update == 1:
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("policy_loss", float(policy_loss))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.dump_tabular()

        if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir():
            savepath = osp.join(logger.get_dir(), 'checkpoint%.5i'%update)
            print('Saving to', savepath)
            model.save(savepath)
    coord.request_stop()
    coord.join(enqueue_threads)
    env.close() 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:50,代碼來源:acktr_disc.py

示例8: learn

# 需要導入模塊: from baselines import common [as 別名]
# 或者: from baselines.common import explained_variance [as 別名]
def learn(network, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20,
                 ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5,
                 kfac_clip=0.001, save_interval=None, lrschedule='linear', load_path=None, **network_kwargs):
    set_global_seeds(seed)

    
    if network == 'cnn':
        network_kwargs['one_dim_bias'] = True

    policy = build_policy(env, network, **network_kwargs)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    make_model = lambda : Model(policy, ob_space, ac_space, nenvs, total_timesteps, nprocs=nprocs, nsteps
                                =nsteps, ent_coef=ent_coef, vf_coef=vf_coef, vf_fisher_coef=
                                vf_fisher_coef, lr=lr, max_grad_norm=max_grad_norm, kfac_clip=kfac_clip,
                                lrschedule=lrschedule)
    if save_interval and logger.get_dir():
        import cloudpickle
        with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh:
            fh.write(cloudpickle.dumps(make_model))
    model = make_model()
            
    if load_path is not None:
        model.load(load_path)

    runner = Runner(env, model, nsteps=nsteps, gamma=gamma)
    nbatch = nenvs*nsteps
    tstart = time.time()
    coord = tf.train.Coordinator()
    enqueue_threads = model.q_runner.create_threads(model.sess, coord=coord, start=True)
    for update in range(1, total_timesteps//nbatch+1):
        obs, states, rewards, masks, actions, values = runner.run()
        policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values)
        model.old_obs = obs
        nseconds = time.time()-tstart
        fps = int((update*nbatch)/nseconds)
        if update % log_interval == 0 or update == 1:
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("policy_loss", float(policy_loss))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.dump_tabular()

        if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir():
            savepath = osp.join(logger.get_dir(), 'checkpoint%.5i'%update)
            print('Saving to', savepath)
            model.save(savepath)
    coord.request_stop()
    coord.join(enqueue_threads)
    env.close()
    return model 
開發者ID:MaxSobolMark,項目名稱:HardRLWithYoutube,代碼行數:59,代碼來源:acktr_disc.py

示例9: learn

# 需要導入模塊: from baselines import common [as 別名]
# 或者: from baselines.common import explained_variance [as 別名]
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, 
    lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100, callback=None):
    tf.reset_default_graph()
    set_global_seeds(seed)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
        max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule)
    runner = Runner(env, model, nsteps=nsteps, gamma=gamma)

    nbatch = nenvs*nsteps
    tstart = time.time()
    sps = 0
    ev = 0
    policy_entropy = 0
    policy_loss = 0
    value_loss = 0
    true_rewards = [] # the undiscounted / bootstrapped rewards, i.e. the rewards as they were returns by the environment
    try:
        for update in range(1, total_timesteps//nbatch+1):

            obs, states, rewards, masks, actions, values, ret_rewards = runner.run()
            true_rewards.extend(ret_rewards)
            policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values)
            nseconds = time.time()-tstart
            sps = int((update*nbatch)/nseconds)
            if update % log_interval == 0 or update == 1:
                ev = explained_variance(values, rewards)
                logger.record_tabular("nupdates", update)
                logger.record_tabular("total_timesteps", update*nbatch)
                logger.record_tabular("sps", sps)
                logger.record_tabular("policy_entropy", float(policy_entropy))
                logger.record_tabular("value_loss", float(value_loss))
                logger.record_tabular("explained_variance", float(ev))
                logger.dump_tabular()
                if callback is not None:
                    if callback(locals(), globals()):
                        break
                true_rewards = []
    except Exception as e:
        print("Exception encountered during training: " + str(e))
    except KeyboardInterrupt:
        print("Aborted training.")

    return model # return model, so we can save it 
開發者ID:ArztSamuel,項目名稱:DRL_DeliveryDuel,代碼行數:49,代碼來源:a2c.py

示例10: learn

# 需要導入模塊: from baselines import common [as 別名]
# 或者: from baselines.common import explained_variance [as 別名]
def learn(network, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20,
                 ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5,
                 kfac_clip=0.001, save_interval=None, lrschedule='linear', load_path=None, is_async=True, **network_kwargs):
    set_global_seeds(seed)


    if network == 'cnn':
        network_kwargs['one_dim_bias'] = True

    policy = build_policy(env, network, **network_kwargs)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    make_model = lambda : Model(policy, ob_space, ac_space, nenvs, total_timesteps, nprocs=nprocs, nsteps
                                =nsteps, ent_coef=ent_coef, vf_coef=vf_coef, vf_fisher_coef=
                                vf_fisher_coef, lr=lr, max_grad_norm=max_grad_norm, kfac_clip=kfac_clip,
                                lrschedule=lrschedule, is_async=is_async)
    if save_interval and logger.get_dir():
        import cloudpickle
        with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh:
            fh.write(cloudpickle.dumps(make_model))
    model = make_model()

    if load_path is not None:
        model.load(load_path)

    runner = Runner(env, model, nsteps=nsteps, gamma=gamma)
    nbatch = nenvs*nsteps
    tstart = time.time()
    coord = tf.train.Coordinator()
    if is_async:
        enqueue_threads = model.q_runner.create_threads(model.sess, coord=coord, start=True)
    else:
        enqueue_threads = []

    for update in range(1, total_timesteps//nbatch+1):
        obs, states, rewards, masks, actions, values = runner.run()
        policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values)
        model.old_obs = obs
        nseconds = time.time()-tstart
        fps = int((update*nbatch)/nseconds)
        if update % log_interval == 0 or update == 1:
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("policy_loss", float(policy_loss))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.dump_tabular()

        if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir():
            savepath = osp.join(logger.get_dir(), 'checkpoint%.5i'%update)
            print('Saving to', savepath)
            model.save(savepath)
    coord.request_stop()
    coord.join(enqueue_threads)
    return model 
開發者ID:hiwonjoon,項目名稱:ICML2019-TREX,代碼行數:62,代碼來源:acktr.py

示例11: learn

# 需要導入模塊: from baselines import common [as 別名]
# 或者: from baselines.common import explained_variance [as 別名]
def learn(policy, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20,
                 nstack=4, ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5,
                 kfac_clip=0.001, save_interval=None, lrschedule='linear'):
    tf.reset_default_graph()
    set_global_seeds(seed)

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    make_model = lambda : Model(policy, ob_space, ac_space, nenvs, total_timesteps, nprocs=nprocs, nsteps
                                =nsteps, nstack=nstack, ent_coef=ent_coef, vf_coef=vf_coef, vf_fisher_coef=
                                vf_fisher_coef, lr=lr, max_grad_norm=max_grad_norm, kfac_clip=kfac_clip,
                                lrschedule=lrschedule)
    if save_interval and logger.get_dir():
        import cloudpickle
        with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh:
            fh.write(cloudpickle.dumps(make_model))
    model = make_model()

    runner = Runner(env, model, nsteps=nsteps, nstack=nstack, gamma=gamma)
    nbatch = nenvs*nsteps
    tstart = time.time()
    coord = tf.train.Coordinator()
    enqueue_threads = model.q_runner.create_threads(model.sess, coord=coord, start=True)
    for update in range(1, total_timesteps//nbatch+1):
        obs, states, rewards, masks, actions, values = runner.run()
        policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values)
        model.old_obs = obs
        nseconds = time.time()-tstart
        fps = int((update*nbatch)/nseconds)
        if update % log_interval == 0 or update == 1:
            ev = explained_variance(values, rewards)
            logger.record_tabular("nupdates", update)
            logger.record_tabular("total_timesteps", update*nbatch)
            logger.record_tabular("fps", fps)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("policy_loss", float(policy_loss))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.dump_tabular()

        if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir():
            savepath = osp.join(logger.get_dir(), 'checkpoint%.5i'%update)
            print('Saving to', savepath)
            model.save(savepath)
    coord.request_stop()
    coord.join(enqueue_threads)
    env.close() 
開發者ID:cxxgtxy,項目名稱:deeprl-baselines,代碼行數:50,代碼來源:acktr_disc.py

示例12: learn

# 需要導入模塊: from baselines import common [as 別名]
# 或者: from baselines.common import explained_variance [as 別名]
def learn(policy, env, seed, nsteps=5, nstack=1, total_timesteps=int(80e6),
        ent_coef=0.01, max_grad_norm=0.5,
          lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99,
          log_interval=100, logdir=None, bootstrap=False, args=None):
    tf.reset_default_graph()
    set_global_seeds(seed)

    lr = args.lr
    vf_coef = args.vf_coef

    nenvs = env.num_envs
    ob_space = env.observation_space
    ac_space = env.action_space
    num_procs = len(env.remotes) # HACK
    model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, nstack=nstack, num_procs=num_procs, ent_coef=ent_coef, vf_coef=vf_coef,
        max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule, logdir=logdir)

    runner = RolloutRunner(env, model, nsteps=nsteps, nstack=nstack, gamma=gamma)

    nbatch = nenvs*nsteps
    tstart = time.time()
    for update in range(1, total_timesteps//nbatch+1):
        if True: #update % log_interval == 0 or update == 1:
            obs, states, rewards, masks, actions, values, u1, u2, END = runner.run()
            if END:
                break
            policy_loss, value_loss, policy_entropy, lv = model.train(obs, states, rewards, masks, u1, u2, values, summary=False)
            nseconds = time.time() - tstart
            fps = int((update * nbatch) / nseconds)

            ev = explained_variance(values, rewards)
            logger.record_tabular("policy_entropy", float(policy_entropy))
            logger.record_tabular("value_loss", float(value_loss))
            logger.record_tabular("explained_variance", float(ev))
            logger.record_tabular("log_variance", lv)
            logger.dump_tabular()
        else:
            obs, states, rewards, masks, actions, values, u1, u2, END = runner.run()
            if END:
                break
            policy_loss, value_loss, policy_entropy, lv = model.train(obs, states, rewards, masks, u1, u2, values)
            nseconds = time.time() - tstart
            fps = int((update * nbatch) / nseconds)
    env.close() 
開發者ID:wgrathwohl,項目名稱:BackpropThroughTheVoidRL,代碼行數:46,代碼來源:a2c.py


注:本文中的baselines.common.explained_variance方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。