當前位置: 首頁>>代碼示例>>Python>>正文


Python atari_wrappers.wrap_deepmind方法代碼示例

本文整理匯總了Python中baselines.common.atari_wrappers.wrap_deepmind方法的典型用法代碼示例。如果您正苦於以下問題:Python atari_wrappers.wrap_deepmind方法的具體用法?Python atari_wrappers.wrap_deepmind怎麽用?Python atari_wrappers.wrap_deepmind使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在baselines.common.atari_wrappers的用法示例。


在下文中一共展示了atari_wrappers.wrap_deepmind方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: make_env

# 需要導入模塊: from baselines.common import atari_wrappers [as 別名]
# 或者: from baselines.common.atari_wrappers import wrap_deepmind [as 別名]
def make_env(env_id, env_type, subrank=0, seed=None, reward_scale=1.0, gamestate=None, wrapper_kwargs={}):
    mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0
    if env_type == 'atari':
        env = make_atari(env_id)
    elif env_type == 'retro':
        import retro
        gamestate = gamestate or retro.State.DEFAULT
        env = retro_wrappers.make_retro(game=env_id, max_episode_steps=10000, use_restricted_actions=retro.Actions.DISCRETE, state=gamestate)
    else:
        env = gym.make(env_id)

    env.seed(seed + subrank if seed is not None else None)
    env = Monitor(env,
                  logger.get_dir() and os.path.join(logger.get_dir(), str(mpi_rank) + '.' + str(subrank)),
                  allow_early_resets=True)

    if env_type == 'atari':
        env = wrap_deepmind(env, **wrapper_kwargs)
    elif env_type == 'retro':
        env = retro_wrappers.wrap_deepmind_retro(env, **wrapper_kwargs)

    if reward_scale != 1:
        env = retro_wrappers.RewardScaler(env, reward_scale)

    return env 
開發者ID:hiwonjoon,項目名稱:ICML2019-TREX,代碼行數:27,代碼來源:cmd_util.py

示例2: make_atari_env

# 需要導入模塊: from baselines.common import atari_wrappers [as 別名]
# 或者: from baselines.common.atari_wrappers import wrap_deepmind [as 別名]
def make_atari_env(env_id, num_env, seed, hparams=None, wrapper_kwargs=None, start_index=0, nsteps=5, **kwargs):
    """
    Create a wrapped, monitored SubprocVecEnv for Atari.
    """
    if wrapper_kwargs is None: wrapper_kwargs = {}
    def make_env(rank): # pylint: disable=C0111
        def _thunk():
            env = make_atari(env_id)
            env.seed(seed + rank)
            env = Monitor(env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)))

            if rank == start_index and 'video_log_dir' in kwargs:
                env = VideoLogMonitor(env, kwargs['video_log_dir'] + '_rgb', write_attention_video=kwargs['write_attention_video'], hparams=hparams, nsteps=nsteps)

            return wrap_deepmind(env, **wrapper_kwargs)
        return _thunk
    set_global_seeds(seed)

    env_fns = [make_env(i + start_index) for i in range(num_env)]

    global my_subproc_vec_env
    assert my_subproc_vec_env == None
    my_subproc_vec_env = SubprocVecEnv(env_fns)

    return my_subproc_vec_env 
開發者ID:vik-goel,項目名稱:MOREL,代碼行數:27,代碼來源:cmd_util.py

示例3: train

# 需要導入模塊: from baselines.common import atari_wrappers [as 別名]
# 或者: from baselines.common.atari_wrappers import wrap_deepmind [as 別名]
def train(env_id, num_timesteps, seed, policy, lrschedule, num_cpu):
    def make_env(rank):
        def _thunk():
            env = make_atari(env_id)
            env.seed(seed + rank)
            env = bench.Monitor(env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)))
            gym.logger.setLevel(logging.WARN)
            return wrap_deepmind(env)
        return _thunk
    set_global_seeds(seed)
    env = SubprocVecEnv([make_env(i) for i in range(num_cpu)])
    if policy == 'cnn':
        policy_fn = CnnPolicy
    elif policy == 'lstm':
        policy_fn = LstmPolicy
    elif policy == 'lnlstm':
        policy_fn = LnLstmPolicy
    learn(policy_fn, env, seed, total_timesteps=int(num_timesteps * 1.1), lrschedule=lrschedule)
    env.close() 
開發者ID:cxxgtxy,項目名稱:deeprl-baselines,代碼行數:21,代碼來源:run_atari.py

示例4: train

# 需要導入模塊: from baselines.common import atari_wrappers [as 別名]
# 或者: from baselines.common.atari_wrappers import wrap_deepmind [as 別名]
def train(env_id, num_timesteps, seed, policy, lrschedule, num_cpu):
    def make_env(rank):
        def _thunk():
            env = make_atari(env_id)
            env.seed(seed + rank)
            env = bench.Monitor(env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)))
            gym.logger.setLevel(logging.WARN)
            return wrap_deepmind(env)
        return _thunk
    set_global_seeds(seed)
    env = SubprocVecEnv([make_env(i) for i in range(num_cpu)])
    if policy == 'cnn':
        policy_fn = AcerCnnPolicy
    elif policy == 'lstm':
        policy_fn = AcerLstmPolicy
    else:
        print("Policy {} not implemented".format(policy))
        return
    learn(policy_fn, env, seed, total_timesteps=int(num_timesteps * 1.1), lrschedule=lrschedule)
    env.close() 
開發者ID:cxxgtxy,項目名稱:deeprl-baselines,代碼行數:22,代碼來源:run_atari.py

示例5: train

# 需要導入模塊: from baselines.common import atari_wrappers [as 別名]
# 或者: from baselines.common.atari_wrappers import wrap_deepmind [as 別名]
def train(env_id, num_frames, seed, policy, lrschedule, num_cpu):
    num_timesteps = int(num_frames / 4 * 1.1) 
    # divide by 4 due to frameskip, then do a little extras so episodes end
    def make_env(rank):
        def _thunk():
            env = gym.make(env_id)
            env.seed(seed + rank)
            env = bench.Monitor(env, logger.get_dir() and 
                os.path.join(logger.get_dir(), "{}.monitor.json".format(rank)))
            gym.logger.setLevel(logging.WARN)
            return wrap_deepmind(env)
        return _thunk
    set_global_seeds(seed)
    env = SubprocVecEnv([make_env(i) for i in range(num_cpu)])
    if policy == 'cnn':
        policy_fn = CnnPolicy
    elif policy == 'linear':
        policy_fn = LinearPolicy
    elif policy == 'lstm':
        policy_fn = LstmPolicy
    elif policy == 'lnlstm':
        policy_fn = LnLstmPolicy
    learn(policy_fn, env, seed, total_timesteps=num_timesteps, lrschedule=lrschedule)
    env.close() 
開發者ID:wgrathwohl,項目名稱:BackpropThroughTheVoidRL,代碼行數:26,代碼來源:run_atari.py

示例6: wrap_atari_dqn

# 需要導入模塊: from baselines.common import atari_wrappers [as 別名]
# 或者: from baselines.common.atari_wrappers import wrap_deepmind [as 別名]
def wrap_atari_dqn(env):
    from baselines.common.atari_wrappers import wrap_deepmind
    return wrap_deepmind(env, frame_stack=True, scale=True) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:5,代碼來源:__init__.py

示例7: train

# 需要導入模塊: from baselines.common import atari_wrappers [as 別名]
# 或者: from baselines.common.atari_wrappers import wrap_deepmind [as 別名]
def train(env_id, num_timesteps, seed):
    from baselines.trpo_mpi.nosharing_cnn_policy import CnnPolicy
    from baselines.trpo_mpi import trpo_mpi
    import baselines.common.tf_util as U
    rank = MPI.COMM_WORLD.Get_rank()
    sess = U.single_threaded_session()
    sess.__enter__()
    if rank == 0:
        logger.configure()
    else:
        logger.configure(format_strs=[])

    workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
    set_global_seeds(workerseed)
    env = make_atari(env_id)
    def policy_fn(name, ob_space, ac_space): #pylint: disable=W0613
        return CnnPolicy(name=name, ob_space=env.observation_space, ac_space=env.action_space)
    env = bench.Monitor(env, logger.get_dir() and osp.join(logger.get_dir(), str(rank)))
    env.seed(workerseed)

    env = wrap_deepmind(env)
    env.seed(workerseed)

    trpo_mpi.learn(env, policy_fn, timesteps_per_batch=512, max_kl=0.001, cg_iters=10, cg_damping=1e-3,
        max_timesteps=int(num_timesteps * 1.1), gamma=0.98, lam=1.0, vf_iters=3, vf_stepsize=1e-4, entcoeff=0.00)
    env.close() 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:28,代碼來源:run_atari.py

示例8: train

# 需要導入模塊: from baselines.common import atari_wrappers [as 別名]
# 或者: from baselines.common.atari_wrappers import wrap_deepmind [as 別名]
def train(env_id, num_timesteps, seed):
    from baselines.ppo1 import pposgd_simple, cnn_policy
    import baselines.common.tf_util as U
    rank = MPI.COMM_WORLD.Get_rank()
    sess = U.single_threaded_session()
    sess.__enter__()
    if rank == 0:
        logger.configure()
    else:
        logger.configure(format_strs=[])
    workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
    set_global_seeds(workerseed)
    env = make_atari(env_id)
    def policy_fn(name, ob_space, ac_space): #pylint: disable=W0613
        return cnn_policy.CnnPolicy(name=name, ob_space=ob_space, ac_space=ac_space)
    env = bench.Monitor(env, logger.get_dir() and
        osp.join(logger.get_dir(), str(rank)))
    env.seed(workerseed)

    env = wrap_deepmind(env)
    env.seed(workerseed)

    pposgd_simple.learn(env, policy_fn,
        max_timesteps=int(num_timesteps * 1.1),
        timesteps_per_actorbatch=256,
        clip_param=0.2, entcoeff=0.01,
        optim_epochs=4, optim_stepsize=1e-3, optim_batchsize=64,
        gamma=0.99, lam=0.95,
        schedule='linear'
    )
    env.close() 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:33,代碼來源:run_atari.py

示例9: make_atari_env

# 需要導入模塊: from baselines.common import atari_wrappers [as 別名]
# 或者: from baselines.common.atari_wrappers import wrap_deepmind [as 別名]
def make_atari_env(env_id, num_env, seed, wrapper_kwargs=None, start_index=0):
    """
    Create a wrapped, monitored SubprocVecEnv for Atari.
    """
    if wrapper_kwargs is None: wrapper_kwargs = {}
    def make_env(rank): # pylint: disable=C0111
        def _thunk():
            env = make_atari(env_id)
            env.seed(seed + rank)
            env = Monitor(env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)))
            return wrap_deepmind(env, **wrapper_kwargs)
        return _thunk
    set_global_seeds(seed)
    return SubprocVecEnv([make_env(i + start_index) for i in range(num_env)]) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:16,代碼來源:cmd_util.py

示例10: make_env

# 需要導入模塊: from baselines.common import atari_wrappers [as 別名]
# 或者: from baselines.common.atari_wrappers import wrap_deepmind [as 別名]
def make_env(env_name, rank, seed):
    env = make_atari(env_name)
    env.seed(seed + rank)
    env = wrap_deepmind(env)
    return env 
開發者ID:lnpalmer,項目名稱:A2C,代碼行數:7,代碼來源:envs.py

示例11: train

# 需要導入模塊: from baselines.common import atari_wrappers [as 別名]
# 或者: from baselines.common.atari_wrappers import wrap_deepmind [as 別名]
def train(env_id, num_timesteps, seed):
    from baselines.ppo1 import pposgd_simple, cnn_policy
    import baselines.common.tf_util as U
    rank = MPI.COMM_WORLD.Get_rank()
    sess = U.single_threaded_session()
    sess.__enter__()
    if rank == 0:
        logger.configure()
    else:
        logger.configure(format_strs=[])
    workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank() if seed is not None else None
    set_global_seeds(workerseed)
    env = make_atari(env_id)
    def policy_fn(name, ob_space, ac_space): #pylint: disable=W0613
        return cnn_policy.CnnPolicy(name=name, ob_space=ob_space, ac_space=ac_space)
    env = bench.Monitor(env, logger.get_dir() and
        osp.join(logger.get_dir(), str(rank)))
    env.seed(workerseed)

    env = wrap_deepmind(env)
    env.seed(workerseed)

    pposgd_simple.learn(env, policy_fn,
        max_timesteps=int(num_timesteps * 1.1),
        timesteps_per_actorbatch=256,
        clip_param=0.2, entcoeff=0.01,
        optim_epochs=4, optim_stepsize=1e-3, optim_batchsize=64,
        gamma=0.99, lam=0.95,
        schedule='linear'
    )
    env.close() 
開發者ID:MaxSobolMark,項目名稱:HardRLWithYoutube,代碼行數:33,代碼來源:run_atari.py

示例12: make_atari_env

# 需要導入模塊: from baselines.common import atari_wrappers [as 別名]
# 或者: from baselines.common.atari_wrappers import wrap_deepmind [as 別名]
def make_atari_env(env_id, num_env, seed, wrapper_kwargs=None, start_index=0):
    """
    Create a wrapped, monitored SubprocVecEnv for Atari.
    """
    if wrapper_kwargs is None: wrapper_kwargs = {}
    mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0
    def make_env(rank): # pylint: disable=C0111
        def _thunk():
            env = make_atari(env_id)
            env.seed(seed + 10000*mpi_rank + rank if seed is not None else None)
            env = Monitor(env, logger.get_dir() and os.path.join(logger.get_dir(), str(mpi_rank) + '.' + str(rank)))
            return wrap_deepmind(env, **wrapper_kwargs)
        return _thunk
    set_global_seeds(seed)
    return SubprocVecEnv([make_env(i + start_index) for i in range(num_env)]) 
開發者ID:MaxSobolMark,項目名稱:HardRLWithYoutube,代碼行數:17,代碼來源:cmd_util.py

示例13: make_env

# 需要導入模塊: from baselines.common import atari_wrappers [as 別名]
# 或者: from baselines.common.atari_wrappers import wrap_deepmind [as 別名]
def make_env(env_id, seed, rank, episode_life=True):
    def _thunk():
        random_seed(seed)
        if env_id.startswith("dm"):
            import dm_control2gym
            _, domain, task = env_id.split('-')
            env = dm_control2gym.make(domain_name=domain, task_name=task)
        else:
            env = gym.make(env_id)
        is_atari = hasattr(gym.envs, 'atari') and isinstance(
            env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
        if is_atari:
            env = make_atari(env_id)
        env.seed(seed + rank)
        env = OriginalReturnWrapper(env)
        if is_atari:
            env = wrap_deepmind(env,
                                episode_life=episode_life,
                                clip_rewards=False,
                                frame_stack=False,
                                scale=False)
            obs_shape = env.observation_space.shape
            if len(obs_shape) == 3:
                env = TransposeImage(env)
            env = FrameStack(env, 4)

        return env

    return _thunk 
開發者ID:ShangtongZhang,項目名稱:DeepRL,代碼行數:31,代碼來源:envs.py


注:本文中的baselines.common.atari_wrappers.wrap_deepmind方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。