當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.dense方法代碼示例

本文整理匯總了Python中baselines.acktr.utils.dense方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.dense方法的具體用法?Python utils.dense怎麽用?Python utils.dense使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在baselines.acktr.utils的用法示例。


在下文中一共展示了utils.dense方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from baselines.acktr import utils [as 別名]
# 或者: from baselines.acktr.utils import dense [as 別名]
def __init__(self, ob_dim, ac_dim): #pylint: disable=W0613
        X = tf.placeholder(tf.float32, shape=[None, ob_dim*2+ac_dim*2+2]) # batch of observations
        vtarg_n = tf.placeholder(tf.float32, shape=[None], name='vtarg')
        wd_dict = {}
        h1 = tf.nn.elu(dense(X, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
        h2 = tf.nn.elu(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
        vpred_n = dense(h2, 1, "hfinal", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)[:,0]
        sample_vpred_n = vpred_n + tf.random_normal(tf.shape(vpred_n))
        wd_loss = tf.get_collection("vf_losses", None)
        loss = tf.reduce_mean(tf.square(vpred_n - vtarg_n)) + tf.add_n(wd_loss)
        loss_sampled = tf.reduce_mean(tf.square(vpred_n - tf.stop_gradient(sample_vpred_n)))
        self._predict = U.function([X], vpred_n)
        optim = kfac.KfacOptimizer(learning_rate=0.001, cold_lr=0.001*(1-0.9), momentum=0.9, \
                                    clip_kl=0.3, epsilon=0.1, stats_decay=0.95, \
                                    async=1, kfac_update=2, cold_iter=50, \
                                    weight_decay_dict=wd_dict, max_grad_norm=None)
        vf_var_list = []
        for var in tf.trainable_variables():
            if "vf" in var.name:
                vf_var_list.append(var)

        update_op, self.q_runner = optim.minimize(loss, loss_sampled, var_list=vf_var_list)
        self.do_update = U.function([X, vtarg_n], update_op) #pylint: disable=E1101
        U.initialize() # Initialize uninitialized TF variables 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:26,代碼來源:value_functions.py

示例2: __init__

# 需要導入模塊: from baselines.acktr import utils [as 別名]
# 或者: from baselines.acktr.utils import dense [as 別名]
def __init__(self, ob_dim, ac_dim): #pylint: disable=W0613
        X = tf.placeholder(tf.float32, shape=[None, ob_dim*2+ac_dim*2+2]) # batch of observations
        vtarg_n = tf.placeholder(tf.float32, shape=[None], name='vtarg')
        wd_dict = {}
        h1 = tf.nn.elu(dense(X, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
        h2 = tf.nn.elu(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
        vpred_n = dense(h2, 1, "hfinal", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)[:,0]
        sample_vpred_n = vpred_n + tf.random_normal(tf.shape(vpred_n))
        wd_loss = tf.get_collection("vf_losses", None)
        loss = U.mean(tf.square(vpred_n - vtarg_n)) + tf.add_n(wd_loss)
        loss_sampled = U.mean(tf.square(vpred_n - tf.stop_gradient(sample_vpred_n)))
        self._predict = U.function([X], vpred_n)
        optim = kfac.KfacOptimizer(learning_rate=0.001, cold_lr=0.001*(1-0.9), momentum=0.9, \
                                    clip_kl=0.3, epsilon=0.1, stats_decay=0.95, \
                                    async=1, kfac_update=2, cold_iter=50, \
                                    weight_decay_dict=wd_dict, max_grad_norm=None)
        vf_var_list = []
        for var in tf.trainable_variables():
            if "vf" in var.name:
                vf_var_list.append(var)

        update_op, self.q_runner = optim.minimize(loss, loss_sampled, var_list=vf_var_list)
        self.do_update = U.function([X, vtarg_n], update_op) #pylint: disable=E1101
        U.initialize() # Initialize uninitialized TF variables 
開發者ID:cxxgtxy,項目名稱:deeprl-baselines,代碼行數:26,代碼來源:value_functions.py

示例3: _init

# 需要導入模塊: from baselines.acktr import utils [as 別名]
# 或者: from baselines.acktr.utils import dense [as 別名]
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True):
        assert isinstance(ob_space, gym.spaces.Box)

        self.pdtype = pdtype = make_pdtype(ac_space)
        sequence_length = None

        ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))

        with tf.variable_scope("obfilter"):
            self.ob_rms = RunningMeanStd(shape=ob_space.shape)

        obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0)
        last_out = obz
        for i in range(num_hid_layers):
            last_out = tf.nn.tanh(dense(last_out, hid_size, "vffc%i" % (i+1), weight_init=U.normc_initializer(1.0)))
        self.vpred = dense(last_out, 1, "vffinal", weight_init=U.normc_initializer(1.0))[:, 0]

        last_out = obz
        for i in range(num_hid_layers):
            last_out = tf.nn.tanh(dense(last_out, hid_size, "polfc%i" % (i+1), weight_init=U.normc_initializer(1.0)))

        if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box):
            mean = dense(last_out, pdtype.param_shape()[0]//2, "polfinal", U.normc_initializer(0.01))
            logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer())
            pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
        else:
            pdparam = dense(last_out, pdtype.param_shape()[0], "polfinal", U.normc_initializer(0.01))

        self.pd = pdtype.pdfromflat(pdparam)

        self.state_in = []
        self.state_out = []

        # change for BC
        stochastic = U.get_placeholder(name="stochastic", dtype=tf.bool, shape=())
        ac = U.switch(stochastic, self.pd.sample(), self.pd.mode())
        self.ac = ac
        self._act = U.function([stochastic, ob], [ac, self.vpred]) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:40,代碼來源:mlp_policy.py

示例4: __init__

# 需要導入模塊: from baselines.acktr import utils [as 別名]
# 或者: from baselines.acktr.utils import dense [as 別名]
def __init__(self, ob_dim, ac_dim):
        # Here we'll construct a bunch of expressions, which will be used in two places:
        # (1) When sampling actions
        # (2) When computing loss functions, for the policy update
        # Variables specific to (1) have the word "sampled" in them,
        # whereas variables specific to (2) have the word "old" in them
        ob_no = tf.placeholder(tf.float32, shape=[None, ob_dim*2], name="ob") # batch of observations
        oldac_na = tf.placeholder(tf.float32, shape=[None, ac_dim], name="ac") # batch of actions previous actions
        oldac_dist = tf.placeholder(tf.float32, shape=[None, ac_dim*2], name="oldac_dist") # batch of actions previous action distributions
        adv_n = tf.placeholder(tf.float32, shape=[None], name="adv") # advantage function estimate
        wd_dict = {}
        h1 = tf.nn.tanh(dense(ob_no, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
        h2 = tf.nn.tanh(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
        mean_na = dense(h2, ac_dim, "mean", weight_init=U.normc_initializer(0.1), bias_init=0.0, weight_loss_dict=wd_dict) # Mean control output
        self.wd_dict = wd_dict
        self.logstd_1a = logstd_1a = tf.get_variable("logstd", [ac_dim], tf.float32, tf.zeros_initializer()) # Variance on outputs
        logstd_1a = tf.expand_dims(logstd_1a, 0)
        std_1a = tf.exp(logstd_1a)
        std_na = tf.tile(std_1a, [tf.shape(mean_na)[0], 1])
        ac_dist = tf.concat([tf.reshape(mean_na, [-1, ac_dim]), tf.reshape(std_na, [-1, ac_dim])], 1)
        sampled_ac_na = tf.random_normal(tf.shape(ac_dist[:,ac_dim:])) * ac_dist[:,ac_dim:] + ac_dist[:,:ac_dim] # This is the sampled action we'll perform.
        logprobsampled_n = - tf.reduce_sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * tf.reduce_sum(tf.square(ac_dist[:,:ac_dim] - sampled_ac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of sampled action
        logprob_n = - tf.reduce_sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * tf.reduce_sum(tf.square(ac_dist[:,:ac_dim] - oldac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of previous actions under CURRENT policy (whereas oldlogprob_n is under OLD policy)
        kl = tf.reduce_mean(kl_div(oldac_dist, ac_dist, ac_dim))
        #kl = .5 * tf.reduce_mean(tf.square(logprob_n - oldlogprob_n)) # Approximation of KL divergence between old policy used to generate actions, and new policy used to compute logprob_n
        surr = - tf.reduce_mean(adv_n * logprob_n) # Loss function that we'll differentiate to get the policy gradient
        surr_sampled = - tf.reduce_mean(logprob_n) # Sampled loss of the policy
        self._act = U.function([ob_no], [sampled_ac_na, ac_dist, logprobsampled_n]) # Generate a new action and its logprob
        #self.compute_kl = U.function([ob_no, oldac_na, oldlogprob_n], kl) # Compute (approximate) KL divergence between old policy and new policy
        self.compute_kl = U.function([ob_no, oldac_dist], kl)
        self.update_info = ((ob_no, oldac_na, adv_n), surr, surr_sampled) # Input and output variables needed for computing loss
        U.initialize() # Initialize uninitialized TF variables 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:34,代碼來源:policies.py

示例5: __init__

# 需要導入模塊: from baselines.acktr import utils [as 別名]
# 或者: from baselines.acktr.utils import dense [as 別名]
def __init__(self, ob_dim, ac_dim):
    # Here we'll construct a bunch of expressions, which will be used in two places:
    # (1) When sampling actions
    # (2) When computing loss functions, for the policy update
    # Variables specific to (1) have the word "sampled" in them,
    # whereas variables specific to (2) have the word "old" in them
    ob_no = tf.placeholder(tf.float32, shape=[None, ob_dim*2], name="ob") # batch of observations
    oldac_na = tf.placeholder(tf.float32, shape=[None, ac_dim], name="ac") # batch of actions previous actions
    oldac_dist = tf.placeholder(tf.float32, shape=[None, ac_dim*2], name="oldac_dist") # batch of actions previous action distributions
    adv_n = tf.placeholder(tf.float32, shape=[None], name="adv") # advantage function estimate
    oldlogprob_n = tf.placeholder(tf.float32, shape=[None], name='oldlogprob') # log probability of previous actions
    wd_dict = {}
    h1 = tf.nn.tanh(dense(ob_no, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
    h2 = tf.nn.tanh(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
    mean_na = dense(h2, ac_dim, "mean", weight_init=U.normc_initializer(0.1), bias_init=0.0, weight_loss_dict=wd_dict) # Mean control output
    self.wd_dict = wd_dict
    self.logstd_1a = logstd_1a = tf.get_variable("logstd", [ac_dim], tf.float32, tf.zeros_initializer()) # Variance on outputs
    logstd_1a = tf.expand_dims(logstd_1a, 0)
    std_1a = tf.exp(logstd_1a)
    std_na = tf.tile(std_1a, [tf.shape(mean_na)[0], 1])
    ac_dist = tf.concat([tf.reshape(mean_na, [-1, ac_dim]), tf.reshape(std_na, [-1, ac_dim])], 1)
    sampled_ac_na = tf.random_normal(tf.shape(ac_dist[:,ac_dim:])) * ac_dist[:,ac_dim:] + ac_dist[:,:ac_dim] # This is the sampled action we'll perform.
    logprobsampled_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - sampled_ac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of sampled action
    logprob_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - oldac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of previous actions under CURRENT policy (whereas oldlogprob_n is under OLD policy)
    kl = U.mean(kl_div(oldac_dist, ac_dist, ac_dim))
    #kl = .5 * U.mean(tf.square(logprob_n - oldlogprob_n)) # Approximation of KL divergence between old policy used to generate actions, and new policy used to compute logprob_n
    surr = - U.mean(adv_n * logprob_n) # Loss function that we'll differentiate to get the policy gradient
    surr_sampled = - U.mean(logprob_n) # Sampled loss of the policy
    self._act = U.function([ob_no], [sampled_ac_na, ac_dist, logprobsampled_n]) # Generate a new action and its logprob
    #self.compute_kl = U.function([ob_no, oldac_na, oldlogprob_n], kl) # Compute (approximate) KL divergence between old policy and new policy
    self.compute_kl = U.function([ob_no, oldac_dist], kl)
    self.update_info = ((ob_no, oldac_na, adv_n), surr, surr_sampled) # Input and output variables needed for computing loss
    U.initialize() # Initialize uninitialized TF variables 
開發者ID:chris-chris,項目名稱:mario-rl-tutorial,代碼行數:35,代碼來源:policies.py

示例6: __init__

# 需要導入模塊: from baselines.acktr import utils [as 別名]
# 或者: from baselines.acktr.utils import dense [as 別名]
def __init__(self, ob_dim, ac_dim):
        # Here we'll construct a bunch of expressions, which will be used in two places:
        # (1) When sampling actions
        # (2) When computing loss functions, for the policy update
        # Variables specific to (1) have the word "sampled" in them,
        # whereas variables specific to (2) have the word "old" in them
        ob_no = tf.placeholder(tf.float32, shape=[None, ob_dim*2], name="ob") # batch of observations
        oldac_na = tf.placeholder(tf.float32, shape=[None, ac_dim], name="ac") # batch of actions previous actions
        oldac_dist = tf.placeholder(tf.float32, shape=[None, ac_dim*2], name="oldac_dist") # batch of actions previous action distributions
        adv_n = tf.placeholder(tf.float32, shape=[None], name="adv") # advantage function estimate
        wd_dict = {}
        h1 = tf.nn.tanh(dense(ob_no, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
        h2 = tf.nn.tanh(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0.0, weight_loss_dict=wd_dict))
        mean_na = dense(h2, ac_dim, "mean", weight_init=U.normc_initializer(0.1), bias_init=0.0, weight_loss_dict=wd_dict) # Mean control output
        self.wd_dict = wd_dict
        self.logstd_1a = logstd_1a = tf.get_variable("logstd", [ac_dim], tf.float32, tf.zeros_initializer()) # Variance on outputs
        logstd_1a = tf.expand_dims(logstd_1a, 0)
        std_1a = tf.exp(logstd_1a)
        std_na = tf.tile(std_1a, [tf.shape(mean_na)[0], 1])
        ac_dist = tf.concat([tf.reshape(mean_na, [-1, ac_dim]), tf.reshape(std_na, [-1, ac_dim])], 1)
        sampled_ac_na = tf.random_normal(tf.shape(ac_dist[:,ac_dim:])) * ac_dist[:,ac_dim:] + ac_dist[:,:ac_dim] # This is the sampled action we'll perform.
        logprobsampled_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - sampled_ac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of sampled action
        logprob_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - oldac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of previous actions under CURRENT policy (whereas oldlogprob_n is under OLD policy)
        kl = U.mean(kl_div(oldac_dist, ac_dist, ac_dim))
        #kl = .5 * U.mean(tf.square(logprob_n - oldlogprob_n)) # Approximation of KL divergence between old policy used to generate actions, and new policy used to compute logprob_n
        surr = - U.mean(adv_n * logprob_n) # Loss function that we'll differentiate to get the policy gradient
        surr_sampled = - U.mean(logprob_n) # Sampled loss of the policy
        self._act = U.function([ob_no], [sampled_ac_na, ac_dist, logprobsampled_n]) # Generate a new action and its logprob
        #self.compute_kl = U.function([ob_no, oldac_na, oldlogprob_n], kl) # Compute (approximate) KL divergence between old policy and new policy
        self.compute_kl = U.function([ob_no, oldac_dist], kl)
        self.update_info = ((ob_no, oldac_na, adv_n), surr, surr_sampled) # Input and output variables needed for computing loss
        U.initialize() # Initialize uninitialized TF variables 
開發者ID:cxxgtxy,項目名稱:deeprl-baselines,代碼行數:34,代碼來源:policies.py

示例7: __init__

# 需要導入模塊: from baselines.acktr import utils [as 別名]
# 或者: from baselines.acktr.utils import dense [as 別名]
def __init__(self, sess, ob_dim, ac_dim, vf_lr=0.001, cv_lr=0.001, reuse=False):
        # Here we'll construct a bunch of expressions, which will be used in two places:
        # (1) When sampling actions
        # (2) When computing loss functions, for the policy update
        # Variables specific to (1) have the word "sampled" in them,
        # whereas variables specific to (2) have the word "old" in them
        self.relaxed = False
        self.X = tf.placeholder(tf.float32, shape=[None, ob_dim*2+ac_dim*2+2]) # batch of observations
        self.ob_no = tf.placeholder(tf.float32, shape=[None, ob_dim*2], name="ob") # batch of observations
        self.oldac_na = tf.placeholder(tf.float32, shape=[None, ac_dim], name="ac") # batch of actions previous actions
        oldac_dist = tf.placeholder(tf.float32, shape=[None, ac_dim*2], name="oldac_dist") # batch of actions previous action distributions
        
        with tf.variable_scope("model", reuse=reuse):
            h1 = tf.nn.tanh(dense(self.ob_no, 64, "pi_h1", weight_init=U.normc_initializer(1.0), bias_init=0.0))
            h2 = tf.nn.tanh(dense(h1, 64, "pi_h2", weight_init=U.normc_initializer(1.0), bias_init=0.0))
            mean_na = dense(h2, ac_dim, "pi", weight_init=U.normc_initializer(0.1), bias_init=0.0) # Mean control output
            self.logstd_1a = logstd_1a = tf.get_variable("logstd", [ac_dim], tf.float32, tf.zeros_initializer()) # Variance on outputs
            logstd_1a = tf.expand_dims(logstd_1a, 0)
            self.std_1a = tf.exp(logstd_1a)
            self.std_na = tf.tile(self.std_1a, [tf.shape(mean_na)[0], 1])
            ac_dist = tf.concat([tf.reshape(mean_na, [-1, ac_dim]), tf.reshape(self.std_na, [-1, ac_dim])], 1)
            sampled_ac_na = tf.random_normal(tf.shape(ac_dist[:,ac_dim:])) * ac_dist[:,ac_dim:] + ac_dist[:,:ac_dim] # This is the sampled action we'll perform.
            logprobsampled_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - sampled_ac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of sampled action
            self.logprob_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - self.oldac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of previous actions under CURRENT policy (whereas oldlogprob_n is under OLD policy)
            kl = U.mean(kl_div(oldac_dist, ac_dist, ac_dim))
        

            vh1 = tf.nn.elu(dense(self.X, 64, "vf_h1", weight_init=U.normc_initializer(1.0), bias_init=0))
            vh2 = tf.nn.elu(dense(vh1, 64, "vf_h2", weight_init=U.normc_initializer(1.0), bias_init=0))
            vpred_n = dense(vh2, 1, "vf", weight_init=None, bias_init=0)
            v0 = vpred_n[:, 0]
            self.vf_optim = tf.train.AdamOptimizer(vf_lr)
        
        def act(ob):
            ac, dist, logp = sess.run([sampled_ac_na, ac_dist, logprobsampled_n], {self.ob_no: ob[None]})  # Generate a new action and its logprob
            return ac[0], dist[0], logp[0]
        def value(obs, x):
            return sess.run(v0, {self.X: x, self.ob_no:obs})
        def preproc(path):
            l = pathlength(path)
            al = np.arange(l).reshape(-1,1)/10.0
            act = path["action_dist"].astype('float32')
            X = np.concatenate([path['observation'], act, al, np.ones((l, 1))], axis=1)
            return X
        def predict(obs, path):
            return value(obs, preproc(path))
        def compute_kl(ob, dist):
            return sess.run(kl, {self.ob_no: ob, oldac_dist: dist})
            
        self.mean = mean_na
        self.vf = v0
        self.act = act
        self.value = value
        self.preproc = preproc
        self.predict = predict
        self.compute_kl = compute_kl
        self.a0 = sampled_ac_na 
開發者ID:wgrathwohl,項目名稱:BackpropThroughTheVoidRL,代碼行數:59,代碼來源:policies.py


注:本文中的baselines.acktr.utils.dense方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。