本文整理匯總了Python中baselines.acktr.kfac.KfacOptimizer方法的典型用法代碼示例。如果您正苦於以下問題:Python kfac.KfacOptimizer方法的具體用法?Python kfac.KfacOptimizer怎麽用?Python kfac.KfacOptimizer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類baselines.acktr.kfac
的用法示例。
在下文中一共展示了kfac.KfacOptimizer方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from baselines.acktr import kfac [as 別名]
# 或者: from baselines.acktr.kfac import KfacOptimizer [as 別名]
def __init__(self, ob_dim, ac_dim): #pylint: disable=W0613
X = tf.placeholder(tf.float32, shape=[None, ob_dim*2+ac_dim*2+2]) # batch of observations
vtarg_n = tf.placeholder(tf.float32, shape=[None], name='vtarg')
wd_dict = {}
h1 = tf.nn.elu(dense(X, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
h2 = tf.nn.elu(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
vpred_n = dense(h2, 1, "hfinal", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)[:,0]
sample_vpred_n = vpred_n + tf.random_normal(tf.shape(vpred_n))
wd_loss = tf.get_collection("vf_losses", None)
loss = tf.reduce_mean(tf.square(vpred_n - vtarg_n)) + tf.add_n(wd_loss)
loss_sampled = tf.reduce_mean(tf.square(vpred_n - tf.stop_gradient(sample_vpred_n)))
self._predict = U.function([X], vpred_n)
optim = kfac.KfacOptimizer(learning_rate=0.001, cold_lr=0.001*(1-0.9), momentum=0.9, \
clip_kl=0.3, epsilon=0.1, stats_decay=0.95, \
async=1, kfac_update=2, cold_iter=50, \
weight_decay_dict=wd_dict, max_grad_norm=None)
vf_var_list = []
for var in tf.trainable_variables():
if "vf" in var.name:
vf_var_list.append(var)
update_op, self.q_runner = optim.minimize(loss, loss_sampled, var_list=vf_var_list)
self.do_update = U.function([X, vtarg_n], update_op) #pylint: disable=E1101
U.initialize() # Initialize uninitialized TF variables
示例2: __init__
# 需要導入模塊: from baselines.acktr import kfac [as 別名]
# 或者: from baselines.acktr.kfac import KfacOptimizer [as 別名]
def __init__(self, ob_dim, ac_dim): #pylint: disable=W0613
X = tf.placeholder(tf.float32, shape=[None, ob_dim*2+ac_dim*2+2]) # batch of observations
vtarg_n = tf.placeholder(tf.float32, shape=[None], name='vtarg')
wd_dict = {}
h1 = tf.nn.elu(dense(X, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
h2 = tf.nn.elu(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
vpred_n = dense(h2, 1, "hfinal", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)[:,0]
sample_vpred_n = vpred_n + tf.random_normal(tf.shape(vpred_n))
wd_loss = tf.get_collection("vf_losses", None)
loss = U.mean(tf.square(vpred_n - vtarg_n)) + tf.add_n(wd_loss)
loss_sampled = U.mean(tf.square(vpred_n - tf.stop_gradient(sample_vpred_n)))
self._predict = U.function([X], vpred_n)
optim = kfac.KfacOptimizer(learning_rate=0.001, cold_lr=0.001*(1-0.9), momentum=0.9, \
clip_kl=0.3, epsilon=0.1, stats_decay=0.95, \
async=1, kfac_update=2, cold_iter=50, \
weight_decay_dict=wd_dict, max_grad_norm=None)
vf_var_list = []
for var in tf.trainable_variables():
if "vf" in var.name:
vf_var_list.append(var)
update_op, self.q_runner = optim.minimize(loss, loss_sampled, var_list=vf_var_list)
self.do_update = U.function([X, vtarg_n], update_op) #pylint: disable=E1101
U.initialize() # Initialize uninitialized TF variables