當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.lnlstm方法代碼示例

本文整理匯總了Python中baselines.a2c.utils.lnlstm方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.lnlstm方法的具體用法?Python utils.lnlstm怎麽用?Python utils.lnlstm使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在baselines.a2c.utils的用法示例。


在下文中一共展示了utils.lnlstm方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: cnn_lstm

# 需要導入模塊: from baselines.a2c import utils [as 別名]
# 或者: from baselines.a2c.utils import lnlstm [as 別名]
def cnn_lstm(nlstm=128, layer_norm=False, **conv_kwargs):
    def network_fn(X, nenv=1):
        nbatch = X.shape[0] 
        nsteps = nbatch // nenv
         
        h = nature_cnn(X, **conv_kwargs)
       
        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, 2*nlstm]) #states

        xs = batch_to_seq(h, nenv, nsteps)
        ms = batch_to_seq(M, nenv, nsteps)

        if layer_norm:
            h5, snew = utils.lnlstm(xs, ms, S, scope='lnlstm', nh=nlstm)
        else:
            h5, snew = utils.lstm(xs, ms, S, scope='lstm', nh=nlstm)
            
        h = seq_to_batch(h5)
        initial_state = np.zeros(S.shape.as_list(), dtype=float)

        return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state}

    return network_fn 
開發者ID:MaxSobolMark,項目名稱:HardRLWithYoutube,代碼行數:26,代碼來源:models.py

示例2: cnn_lstm

# 需要導入模塊: from baselines.a2c import utils [as 別名]
# 或者: from baselines.a2c.utils import lnlstm [as 別名]
def cnn_lstm(nlstm=128, layer_norm=False, **conv_kwargs):
    def network_fn(X, nenv=1):
        nbatch = X.shape[0]
        nsteps = nbatch // nenv

        h = nature_cnn(X, **conv_kwargs)

        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, 2*nlstm]) #states

        xs = batch_to_seq(h, nenv, nsteps)
        ms = batch_to_seq(M, nenv, nsteps)

        if layer_norm:
            h5, snew = utils.lnlstm(xs, ms, S, scope='lnlstm', nh=nlstm)
        else:
            h5, snew = utils.lstm(xs, ms, S, scope='lstm', nh=nlstm)

        h = seq_to_batch(h5)
        initial_state = np.zeros(S.shape.as_list(), dtype=float)

        return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state}

    return network_fn 
開發者ID:hiwonjoon,項目名稱:ICML2019-TREX,代碼行數:26,代碼來源:models.py

示例3: cnn_lstm

# 需要導入模塊: from baselines.a2c import utils [as 別名]
# 或者: from baselines.a2c.utils import lnlstm [as 別名]
def cnn_lstm(nlstm=128, layer_norm=False, conv_fn=nature_cnn, **conv_kwargs):
    def network_fn(X, nenv=1):
        nbatch = X.shape[0]
        nsteps = nbatch // nenv

        h = conv_fn(X, **conv_kwargs)

        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, 2*nlstm]) #states

        xs = batch_to_seq(h, nenv, nsteps)
        ms = batch_to_seq(M, nenv, nsteps)

        if layer_norm:
            h5, snew = utils.lnlstm(xs, ms, S, scope='lnlstm', nh=nlstm)
        else:
            h5, snew = utils.lstm(xs, ms, S, scope='lstm', nh=nlstm)

        h = seq_to_batch(h5)
        initial_state = np.zeros(S.shape.as_list(), dtype=float)

        return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state}

    return network_fn 
開發者ID:openai,項目名稱:baselines,代碼行數:26,代碼來源:models.py

示例4: __init__

# 需要導入模塊: from baselines.a2c import utils [as 別名]
# 或者: from baselines.a2c.utils import lnlstm [as 別名]
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
        nenv = nbatch // nsteps
        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc)
        nact = ac_space.n
        X = tf.placeholder(tf.uint8, ob_shape) #obs
        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(X)
            xs = batch_to_seq(h, nenv, nsteps)
            ms = batch_to_seq(M, nenv, nsteps)
            h5, snew = lnlstm(xs, ms, S, 'lstm1', nh=nlstm)
            h5 = seq_to_batch(h5)
            pi = fc(h5, 'pi', nact)
            vf = fc(h5, 'v', 1)

        self.pdtype = make_pdtype(ac_space)
        self.pd = self.pdtype.pdfromflat(pi)

        v0 = vf[:, 0]
        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)

        def step(ob, state, mask):
            return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask})

        def value(ob, state, mask):
            return sess.run(v0, {X:ob, S:state, M:mask})

        self.X = X
        self.M = M
        self.S = S
        self.pi = pi
        self.vf = vf
        self.step = step
        self.value = value 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:40,代碼來源:policies.py

示例5: __init__

# 需要導入模塊: from baselines.a2c import utils [as 別名]
# 或者: from baselines.a2c.utils import lnlstm [as 別名]
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
        nenv = nbatch // nsteps
        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc)
        X = tf.placeholder(tf.uint8, ob_shape) #obs
        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
        self.pdtype = make_pdtype(ac_space)
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(X)
            xs = batch_to_seq(h, nenv, nsteps)
            ms = batch_to_seq(M, nenv, nsteps)
            h5, snew = lnlstm(xs, ms, S, 'lstm1', nh=nlstm)
            h5 = seq_to_batch(h5)
            vf = fc(h5, 'v', 1)
            self.pd, self.pi = self.pdtype.pdfromlatent(h5)

        v0 = vf[:, 0]
        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)

        def step(ob, state, mask):
            return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask})

        def value(ob, state, mask):
            return sess.run(v0, {X:ob, S:state, M:mask})

        self.X = X
        self.M = M
        self.S = S
        self.vf = vf
        self.step = step
        self.value = value 
開發者ID:flyyufelix,項目名稱:sonic_contest,代碼行數:36,代碼來源:policies.py

示例6: __init__

# 需要導入模塊: from baselines.a2c import utils [as 別名]
# 或者: from baselines.a2c.utils import lnlstm [as 別名]
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
        nenv = nbatch // nsteps
        X, processed_x = observation_input(ob_space, nbatch)
        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
        self.pdtype = make_pdtype(ac_space)
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(processed_x)
            xs = batch_to_seq(h, nenv, nsteps)
            ms = batch_to_seq(M, nenv, nsteps)
            h5, snew = lnlstm(xs, ms, S, 'lstm1', nh=nlstm)
            h5 = seq_to_batch(h5)
            vf = fc(h5, 'v', 1)
            self.pd, self.pi = self.pdtype.pdfromlatent(h5)

        v0 = vf[:, 0]
        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)

        def step(ob, state, mask):
            return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask})

        def value(ob, state, mask):
            return sess.run(v0, {X:ob, S:state, M:mask})

        self.X = X
        self.M = M
        self.S = S
        self.vf = vf
        self.step = step
        self.value = value 
開發者ID:junhyukoh,項目名稱:self-imitation-learning,代碼行數:34,代碼來源:policies.py

示例7: __init__

# 需要導入模塊: from baselines.a2c import utils [as 別名]
# 或者: from baselines.a2c.utils import lnlstm [as 別名]
def __init__(self, sess, ob_space, ac_space, nenv, nsteps, nstack, nlstm=256, reuse=False):
        nbatch = nenv*nsteps
        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc*nstack)
        nact = ac_space.n
        X = tf.placeholder(tf.uint8, ob_shape) #obs
        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
        with tf.variable_scope("model", reuse=reuse):
            h = conv(tf.cast(X, tf.float32)/255., 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2))
            h2 = conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2))
            h3 = conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2))
            h3 = conv_to_fc(h3)
            h4 = fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2))
            xs = batch_to_seq(h4, nenv, nsteps)
            ms = batch_to_seq(M, nenv, nsteps)
            h5, snew = lnlstm(xs, ms, S, 'lstm1', nh=nlstm)
            h5 = seq_to_batch(h5)
            pi = fc(h5, 'pi', nact, act=lambda x:x)
            vf = fc(h5, 'v', 1, act=lambda x:x)

        v0 = vf[:, 0]
        a0 = sample(pi)
        self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)

        def step(ob, state, mask):
            a, v, s = sess.run([a0, v0, snew], {X:ob, S:state, M:mask})
            return a, v, s

        def value(ob, state, mask):
            return sess.run(v0, {X:ob, S:state, M:mask})

        self.X = X
        self.M = M
        self.S = S
        self.pi = pi
        self.vf = vf
        self.step = step
        self.value = value 
開發者ID:cxxgtxy,項目名稱:deeprl-baselines,代碼行數:41,代碼來源:policies.py

示例8: lstm

# 需要導入模塊: from baselines.a2c import utils [as 別名]
# 或者: from baselines.a2c.utils import lnlstm [as 別名]
def lstm(nlstm=128, layer_norm=False):
    """
    Builds LSTM (Long-Short Term Memory) network to be used in a policy.
    Note that the resulting function returns not only the output of the LSTM 
    (i.e. hidden state of lstm for each step in the sequence), but also a dictionary
    with auxiliary tensors to be set as policy attributes. 

    Specifically, 
        S is a placeholder to feed current state (LSTM state has to be managed outside policy)
        M is a placeholder for the mask (used to mask out observations after the end of the episode, but can be used for other purposes too)
        initial_state is a numpy array containing initial lstm state (usually zeros)
        state is the output LSTM state (to be fed into S at the next call)


    An example of usage of lstm-based policy can be found here: common/tests/test_doc_examples.py/test_lstm_example
            
    Parameters:
    ----------

    nlstm: int          LSTM hidden state size

    layer_norm: bool    if True, layer-normalized version of LSTM is used

    Returns:
    -------

    function that builds LSTM with a given input tensor / placeholder
    """
        
    def network_fn(X, nenv=1):
        nbatch = X.shape[0] 
        nsteps = nbatch // nenv
         
        h = tf.layers.flatten(X)

        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, 2*nlstm]) #states

        xs = batch_to_seq(h, nenv, nsteps)
        ms = batch_to_seq(M, nenv, nsteps)

        if layer_norm:
            h5, snew = utils.lnlstm(xs, ms, S, scope='lnlstm', nh=nlstm)
        else:
            h5, snew = utils.lstm(xs, ms, S, scope='lstm', nh=nlstm)
            
        h = seq_to_batch(h5)
        initial_state = np.zeros(S.shape.as_list(), dtype=float)

        return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state}

    return network_fn 
開發者ID:MaxSobolMark,項目名稱:HardRLWithYoutube,代碼行數:54,代碼來源:models.py

示例9: lstm

# 需要導入模塊: from baselines.a2c import utils [as 別名]
# 或者: from baselines.a2c.utils import lnlstm [as 別名]
def lstm(nlstm=128, layer_norm=False):
    """
    Builds LSTM (Long-Short Term Memory) network to be used in a policy.
    Note that the resulting function returns not only the output of the LSTM
    (i.e. hidden state of lstm for each step in the sequence), but also a dictionary
    with auxiliary tensors to be set as policy attributes.

    Specifically,
        S is a placeholder to feed current state (LSTM state has to be managed outside policy)
        M is a placeholder for the mask (used to mask out observations after the end of the episode, but can be used for other purposes too)
        initial_state is a numpy array containing initial lstm state (usually zeros)
        state is the output LSTM state (to be fed into S at the next call)


    An example of usage of lstm-based policy can be found here: common/tests/test_doc_examples.py/test_lstm_example

    Parameters:
    ----------

    nlstm: int          LSTM hidden state size

    layer_norm: bool    if True, layer-normalized version of LSTM is used

    Returns:
    -------

    function that builds LSTM with a given input tensor / placeholder
    """

    def network_fn(X, nenv=1):
        nbatch = X.shape[0]
        nsteps = nbatch // nenv

        h = tf.layers.flatten(X)

        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, 2*nlstm]) #states

        xs = batch_to_seq(h, nenv, nsteps)
        ms = batch_to_seq(M, nenv, nsteps)

        if layer_norm:
            h5, snew = utils.lnlstm(xs, ms, S, scope='lnlstm', nh=nlstm)
        else:
            h5, snew = utils.lstm(xs, ms, S, scope='lstm', nh=nlstm)

        h = seq_to_batch(h5)
        initial_state = np.zeros(S.shape.as_list(), dtype=float)

        return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state}

    return network_fn 
開發者ID:hiwonjoon,項目名稱:ICML2019-TREX,代碼行數:54,代碼來源:models.py

示例10: __init__

# 需要導入模塊: from baselines.a2c import utils [as 別名]
# 或者: from baselines.a2c.utils import lnlstm [as 別名]
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
        nenv = nbatch // nsteps
        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc)
        nact = ac_space.n
        X = tf.placeholder(tf.uint8, ob_shape) #obs
        M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
        with tf.variable_scope("model", reuse=reuse):
            h = conv(tf.cast(X, tf.float32)/255., 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2))
            h2 = conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2))
            h3 = conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2))
            h3 = conv_to_fc(h3)
            h4 = fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2))
            xs = batch_to_seq(h4, nenv, nsteps)
            ms = batch_to_seq(M, nenv, nsteps)
            h5, snew = lnlstm(xs, ms, S, 'lstm1', nh=nlstm)
            h5 = seq_to_batch(h5)
            pi = fc(h5, 'pi', nact, act=lambda x:x)
            vf = fc(h5, 'v', 1, act=lambda x:x)

        self.pdtype = make_pdtype(ac_space)
        self.pd = self.pdtype.pdfromflat(pi)

        v0 = vf[:, 0]
        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)

        def step(ob, state, mask):
            return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask})

        def value(ob, state, mask):
            return sess.run(v0, {X:ob, S:state, M:mask})

        self.X = X
        self.M = M
        self.S = S
        self.pi = pi
        self.vf = vf
        self.step = step
        self.value = value 
開發者ID:cxxgtxy,項目名稱:deeprl-baselines,代碼行數:44,代碼來源:policies.py


注:本文中的baselines.a2c.utils.lnlstm方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。