本文整理匯總了Python中azureml.core.compute.AmlCompute.provisioning_configuration方法的典型用法代碼示例。如果您正苦於以下問題:Python AmlCompute.provisioning_configuration方法的具體用法?Python AmlCompute.provisioning_configuration怎麽用?Python AmlCompute.provisioning_configuration使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類azureml.core.compute.AmlCompute
的用法示例。
在下文中一共展示了AmlCompute.provisioning_configuration方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _create_cluster
# 需要導入模塊: from azureml.core.compute import AmlCompute [as 別名]
# 或者: from azureml.core.compute.AmlCompute import provisioning_configuration [as 別名]
def _create_cluster(
workspace,
cluster_name=_CLUSTER_NAME,
vm_size=_CLUSTER_VM_SIZE,
min_nodes=_CLUSTER_MIN_NODES,
max_nodes=_CLUSTER_MAX_NODES,
):
logger = logging.getLogger(__name__)
try:
compute_target = ComputeTarget(workspace=workspace, name=cluster_name)
logger.info("Found existing compute target.")
except ComputeTargetException:
logger.info("Creating a new compute target...")
compute_config = AmlCompute.provisioning_configuration(
vm_size=vm_size, min_nodes=min_nodes, max_nodes=max_nodes
)
# create the cluster
compute_target = ComputeTarget.create(workspace, cluster_name, compute_config)
compute_target.wait_for_completion(show_output=True)
# use get_status() to get a detailed status for the current AmlCompute.
logger.debug(compute_target.get_status().serialize())
return compute_target
示例2: _get_compute_target
# 需要導入模塊: from azureml.core.compute import AmlCompute [as 別名]
# 或者: from azureml.core.compute.AmlCompute import provisioning_configuration [as 別名]
def _get_compute_target(self, ws, cluster_name):
compute_min_nodes = int(self.ctx.config.get('cluster/min_nodes',1))
compute_max_nodes = int(self.ctx.config.get('cluster/max_nodes',4))
compute_sku = self.ctx.config.get('cluster/type','STANDARD_D2_V2')
if cluster_name in ws.compute_targets:
compute_target = ws.compute_targets[cluster_name]
if compute_target and type(compute_target) is AmlCompute:
ct_status = compute_target.get_status()
if ct_status:
ct_def = ct_status.serialize()
if ct_def.get('vmSize') == compute_sku and \
ct_def.get('scaleSettings', {}).get('minNodeCount') == compute_min_nodes and \
ct_def.get('scaleSettings', {}).get('maxNodeCount') == compute_max_nodes:
self.ctx.log(
'Found compute target %s ...' % cluster_name)
return compute_target
else:
self.ctx.log('Delete existing AML compute context, since parameters has been modified.')
compute_target.delete()
# It works versy slow, so just change name
# cluster_name = self._fix_name(shortuuid.uuid())
# self.ctx.config.set('cluster/name', cluster_name)
# self.ctx.config.write()
try:
compute_target.wait_for_completion(show_output = True)
except Exception as e:
self.ctx.log_debug(str(e))
self.ctx.log('Creating new AML compute context %s...'%cluster_name)
provisioning_config = AmlCompute.provisioning_configuration(
vm_size=compute_sku, min_nodes=compute_min_nodes,
max_nodes=compute_max_nodes)
compute_target = ComputeTarget.create(
ws, cluster_name, provisioning_config)
compute_target.wait_for_completion(show_output = True)
return compute_target
示例3: _create_cluster
# 需要導入模塊: from azureml.core.compute import AmlCompute [as 別名]
# 或者: from azureml.core.compute.AmlCompute import provisioning_configuration [as 別名]
def _create_cluster(workspace, cluster_name, vm_size, min_nodes, max_nodes):
"""Creates AzureML cluster
Args:
cluster_name (string): The name you wish to assign the cluster.
vm_size (string): The type of sku to use for your vm.
min_nodes (int): Minimum number of nodes in cluster.
Use 0 if you don't want to incur costs when it isn't being used.
max_nodes (int): Maximum number of nodes in cluster.
"""
logger = logging.getLogger(__name__)
try:
compute_target = ComputeTarget(workspace=workspace, name=cluster_name)
logger.info("Found existing compute target.")
except ComputeTargetException:
logger.info("Creating a new compute target...")
compute_config = AmlCompute.provisioning_configuration(
vm_size=vm_size, min_nodes=min_nodes, max_nodes=max_nodes
)
# create the cluster
compute_target = ComputeTarget.create(workspace, cluster_name, compute_config)
compute_target.wait_for_completion(show_output=True)
# use get_status() to get a detailed status for the current AmlCompute.
logger.debug(compute_target.get_status().serialize())
return compute_target
示例4: get_compute
# 需要導入模塊: from azureml.core.compute import AmlCompute [as 別名]
# 或者: from azureml.core.compute.AmlCompute import provisioning_configuration [as 別名]
def get_compute(workspace: Workspace, compute_name: str, vm_size: str, for_batch_scoring: bool = False): # NOQA E501
try:
if compute_name in workspace.compute_targets:
compute_target = workspace.compute_targets[compute_name]
if compute_target and type(compute_target) is AmlCompute:
print("Found existing compute target " + compute_name + " so using it.") # NOQA
else:
e = Env()
compute_config = AmlCompute.provisioning_configuration(
vm_size=vm_size,
vm_priority=e.vm_priority if not for_batch_scoring else e.vm_priority_scoring, # NOQA E501
min_nodes=e.min_nodes if not for_batch_scoring else e.min_nodes_scoring, # NOQA E501
max_nodes=e.max_nodes if not for_batch_scoring else e.max_nodes_scoring, # NOQA E501
idle_seconds_before_scaledown="300"
# #Uncomment the below lines for VNet support
# vnet_resourcegroup_name=vnet_resourcegroup_name,
# vnet_name=vnet_name,
# subnet_name=subnet_name
)
compute_target = ComputeTarget.create(
workspace, compute_name, compute_config
)
compute_target.wait_for_completion(
show_output=True, min_node_count=None, timeout_in_minutes=10
)
return compute_target
except ComputeTargetException as ex:
print(ex)
print("An error occurred trying to provision compute.")
exit(1)
示例5: get_or_create_amlcompute
# 需要導入模塊: from azureml.core.compute import AmlCompute [as 別名]
# 或者: from azureml.core.compute.AmlCompute import provisioning_configuration [as 別名]
def get_or_create_amlcompute(
workspace, compute_name, vm_size="", min_nodes=0, max_nodes=None, idle_seconds_before_scaledown=None, verbose=False,
):
"""
Get or create AmlCompute as the compute target. If a cluster of the same name is found,
attach it and rescale accordingly. Otherwise, create a new cluster.
Args:
workspace (Workspace): workspace
compute_name (str): name
vm_size (str, optional): vm size
min_nodes (int, optional): minimum number of nodes in cluster
max_nodes (None, optional): maximum number of nodes in cluster
idle_seconds_before_scaledown (None, optional): how long to wait before the cluster
autoscales down
verbose (bool, optional): if true, print logs
Returns:
Compute target
"""
try:
if verbose:
print("Found compute target: {}".format(compute_name))
compute_target = ComputeTarget(workspace=workspace, name=compute_name)
if len(compute_target.list_nodes()) < max_nodes:
if verbose:
print("Rescaling to {} nodes".format(max_nodes))
compute_target.update(max_nodes=max_nodes)
compute_target.wait_for_completion(show_output=verbose)
except ComputeTargetException:
if verbose:
print("Creating new compute target: {}".format(compute_name))
compute_config = AmlCompute.provisioning_configuration(
vm_size=vm_size,
min_nodes=min_nodes,
max_nodes=max_nodes,
idle_seconds_before_scaledown=idle_seconds_before_scaledown,
)
compute_target = ComputeTarget.create(workspace, compute_name, compute_config)
compute_target.wait_for_completion(show_output=verbose)
return compute_target
示例6: get_or_create_amlcompute
# 需要導入模塊: from azureml.core.compute import AmlCompute [as 別名]
# 或者: from azureml.core.compute.AmlCompute import provisioning_configuration [as 別名]
def get_or_create_amlcompute(
workspace,
compute_name,
vm_size="",
min_nodes=0,
max_nodes=None,
idle_seconds_before_scaledown=None,
verbose=False,
):
"""
Get or create AmlCompute as the compute target. If a cluster of the same name is found,
attach it and rescale accordingly. Otherwise, create a new cluster.
Args:
workspace (Workspace): workspace
compute_name (str): name
vm_size (str, optional): vm size
min_nodes (int, optional): minimum number of nodes in cluster
max_nodes (None, optional): maximum number of nodes in cluster
idle_seconds_before_scaledown (None, optional): how long to wait before the cluster
autoscales down
verbose (bool, optional): if true, print logs
Returns:
Compute target
"""
try:
if verbose:
print("Found compute target: {}".format(compute_name))
compute_target = ComputeTarget(workspace=workspace, name=compute_name)
if len(compute_target.list_nodes()) < max_nodes:
if verbose:
print("Rescaling to {} nodes".format(max_nodes))
compute_target.update(max_nodes=max_nodes)
compute_target.wait_for_completion(show_output=verbose)
except ComputeTargetException:
if verbose:
print("Creating new compute target: {}".format(compute_name))
compute_config = AmlCompute.provisioning_configuration(
vm_size=vm_size,
min_nodes=min_nodes,
max_nodes=max_nodes,
idle_seconds_before_scaledown=idle_seconds_before_scaledown,
)
compute_target = ComputeTarget.create(workspace, compute_name, compute_config)
compute_target.wait_for_completion(show_output=verbose)
return compute_target