本文整理匯總了Python中autograd.numpy.where方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.where方法的具體用法?Python numpy.where怎麽用?Python numpy.where使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類autograd.numpy
的用法示例。
在下文中一共展示了numpy.where方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: one_of_K_code
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def one_of_K_code(arr):
"""
Make a one-of-K coding out of the numpy array.
For example, if arr = ([0, 1, 0, 2]), then return a 2d array of the form
[[1, 0, 0],
[0, 1, 0],
[1, 0, 0],
[0, 0, 1]]
"""
U = np.unique(arr)
n = len(arr)
nu = len(U)
X = np.zeros((n, nu))
for i, u in enumerate(U):
Ii = np.where( np.abs(arr - u) < 1e-8 )
#ni = len(Ii)
X[Ii[0], i] = 1
return X
示例2: filter
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def filter(self, niter = 20, k = 5):
""" Applies wavelet iterative filtering to denoise the image
Parameters
----------
niter: int
number of iterations
k: float
threshold in units of noise levels below which coefficients are thresholded
lvl: int
Number of wavelet scale to use in the decomposition
Results
-------
filtered: array
the image of filtered images
"""
if self._coeffs is None:
self.coefficients
if self._image is None:
self.image()
sigma = k * mad_wavelet(self._image)[:, None] * self.norm[None, :]
filtered = 0
image = self._image
wavelet = self._coeffs
support = np.where(np.abs(wavelet[:,:-1,:,:]) < sigma[:,:-1,None, None] * np.ones_like(wavelet[:,:-1,:,:]))
for i in range(niter):
R = image - filtered
R_coeff = Starlet(R)
R_coeff.coefficients[support] = 0
filtered += R_coeff.image
filtered[filtered < 0] = 0
self.image = filtered
return filtered
示例3: add_control_surface
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def add_control_surface(self, deflection=0., hinge_point=0.75):
# Returns a version of the airfoil with a control surface added at a given point.
# Inputs:
# # deflection: the deflection angle, in degrees. Downwards-positive.
# # hinge_point: the location of the hinge, as a fraction of chord.
# Make the rotation matrix for the given angle.
sintheta = np.sin(np.radians(-deflection))
costheta = np.cos(np.radians(-deflection))
rotation_matrix = np.array(
[[costheta, -sintheta],
[sintheta, costheta]]
)
# Find the hinge point
hinge_point = np.array(
(hinge_point, self.get_camber_at_chord_fraction(hinge_point))) # Make hinge_point a vector.
# Split the airfoil into the sections before and after the hinge
split_index = np.where(self.mcl_coordinates[:, 0] > hinge_point[0])[0][0]
mcl_coordinates_before = self.mcl_coordinates[:split_index, :]
mcl_coordinates_after = self.mcl_coordinates[split_index:, :]
upper_minus_mcl_before = self.upper_minus_mcl[:split_index, :]
upper_minus_mcl_after = self.upper_minus_mcl[split_index:, :]
# Rotate the mean camber line (MCL) and "upper minus mcl"
new_mcl_coordinates_after = np.transpose(
rotation_matrix @ np.transpose(mcl_coordinates_after - hinge_point)) + hinge_point
new_upper_minus_mcl_after = np.transpose(rotation_matrix @ np.transpose(upper_minus_mcl_after))
# Do blending
# Assemble airfoil
new_mcl_coordinates = np.vstack((mcl_coordinates_before, new_mcl_coordinates_after))
new_upper_minus_mcl = np.vstack((upper_minus_mcl_before, new_upper_minus_mcl_after))
upper_coordinates = np.flipud(new_mcl_coordinates + new_upper_minus_mcl)
lower_coordinates = new_mcl_coordinates - new_upper_minus_mcl
coordinates = np.vstack((upper_coordinates, lower_coordinates[1:, :]))
new_airfoil = Airfoil(name=self.name + " flapped", coordinates=coordinates, repanel=False)
return new_airfoil # TODO fix self-intersecting airfoils at high deflections
示例4: conditional_probability_alive
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def conditional_probability_alive(
self,
frequency,
recency,
T
):
"""
Compute conditional probability alive.
Compute the probability that a customer with history
(frequency, recency, T) is currently alive.
From http://www.brucehardie.com/notes/021/palive_for_BGNBD.pdf
Parameters
----------
frequency: array or scalar
historical frequency of customer.
recency: array or scalar
historical recency of customer.
T: array or scalar
age of the customer.
Returns
-------
array
value representing a probability
"""
r, alpha, a, b = self._unload_params("r", "alpha", "a", "b")
log_div = (r + frequency) * np.log((alpha + T) / (alpha + recency)) + np.log(
a / (b + np.maximum(frequency, 1) - 1)
)
return np.atleast_1d(np.where(frequency == 0, 1.0, expit(-log_div)))
示例5: normalize
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def normalize(a):
def replace_zeros(a):
return np.where(a > 0., a, 1.)
return a / replace_zeros(a.sum(-1, keepdims=True))
示例6: grad_poisson_logpmf
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def grad_poisson_logpmf(k, mu):
return np.where(k % 1 == 0, k / mu - 1, 0)
示例7: grad_chi2_logpdf
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def grad_chi2_logpdf(x, df):
return np.where(df % 1 == 0, (df - x - 2) / (2 * x), 0)
示例8: test_where
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def test_where():
def fun(x, y):
b = np.where(C, x, y)
return b
C = npr.randn(4, 5) > 0
A = npr.randn(4, 5)
B = npr.randn(4, 5)
check_grads(fun)(A, B)
示例9: fit
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def fit(self, X, y):
X, y = check_X_y(X, y, estimator=self, dtype=FLOAT_DTYPES)
if self.effect not in self.allowed_effects:
raise ValueError(f"effect {self.effect} must be in {self.allowed_effects}")
def deadzone(errors):
if self.effect == "linear":
return np.where(errors > self.threshold, errors, np.zeros(errors.shape))
if self.effect == "quadratic":
return np.where(
errors > self.threshold, errors ** 2, np.zeros(errors.shape)
)
def training_loss(weights):
diff = np.abs(np.dot(X, weights) - y)
if self.relative:
diff = diff / y
return np.mean(deadzone(diff))
n, k = X.shape
# Build a function that returns gradients of training loss using autograd.
training_gradient_fun = grad(training_loss)
# Check the gradients numerically, just to be safe.
weights = np.random.normal(0, 1, k)
if self.check_grad:
check_grads(training_loss, modes=["rev"])(weights)
# Optimize weights using gradient descent.
self.loss_log_ = np.zeros(self.n_iter)
self.wts_log_ = np.zeros((self.n_iter, k))
self.deriv_log_ = np.zeros((self.n_iter, k))
for i in range(self.n_iter):
weights -= training_gradient_fun(weights) * self.stepsize
self.wts_log_[i, :] = weights.ravel()
self.loss_log_[i] = training_loss(weights)
self.deriv_log_[i, :] = training_gradient_fun(weights).ravel()
self.coefs_ = weights
return self
示例10: get_bounding_cube
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def get_bounding_cube(self):
""" Finds the axis-aligned cube that encloses the airplane with the smallest size.
Useful for plotting and getting a sense for the scale of a problem.
Args:
self.wings (iterable): All the wings included for analysis each containing their geometry in x,y,z notation using units of m
Returns:
tuple: Tuple of 4 floats x, y, z, and s, where x, y, and z are the coordinates of the cube center,
and s is half of the side length.
"""
# Get vertices to enclose
vertices = None
for wing in self.wings:
for xsec in wing.xsecs:
if vertices is None:
vertices = xsec.xyz_le + wing.xyz_le
else:
vertices = np.vstack((
vertices,
xsec.xyz_le + wing.xyz_le
))
vertices = np.vstack((
vertices,
xsec.xyz_te() + wing.xyz_le
))
if wing.symmetric:
vertices = np.vstack((
vertices,
reflect_over_XZ_plane(xsec.xyz_le + wing.xyz_le)
))
vertices = np.vstack((
vertices,
reflect_over_XZ_plane(xsec.xyz_te() + wing.xyz_le)
))
# Enclose them
x_max = np.max(vertices[:, 0])
y_max = np.max(vertices[:, 1])
z_max = np.max(vertices[:, 2])
x_min = np.min(vertices[:, 0])
y_min = np.min(vertices[:, 1])
z_min = np.min(vertices[:, 2])
x = np.mean((x_max, x_min))
y = np.mean((y_max, y_min))
z = np.mean((z_max, z_min))
s = 0.5 * np.max((
x_max - x_min,
y_max - y_min,
z_max - z_min
))
return x, y, z, s
示例11: conditional_expected_number_of_purchases_up_to_time
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def conditional_expected_number_of_purchases_up_to_time(
self,
t,
frequency,
recency,
T
):
"""
Conditional expected number of purchases up to time.
Calculate the expected number of repeat purchases up to time t for a
randomly chosen individual from the population, given they have
purchase history (frequency, recency, T).
This function uses equation (10) from [2]_.
Parameters
----------
t: array_like
times to calculate the expectation for.
frequency: array_like
historical frequency of customer.
recency: array_like
historical recency of customer.
T: array_like
age of the customer.
Returns
-------
array_like
References
----------
.. [2] Fader, Peter S., Bruce G.S. Hardie, and Ka Lok Lee (2005a),
"Counting Your Customers the Easy Way: An Alternative to the
Pareto/NBD Model," Marketing Science, 24 (2), 275-84.
"""
x = frequency
r, alpha, a, b = self._unload_params("r", "alpha", "a", "b")
_a = r + x
_b = b + x
_c = a + b + x - 1
_z = t / (alpha + T + t)
ln_hyp_term = np.log(hyp2f1(_a, _b, _c, _z))
# if the value is inf, we are using a different but equivalent
# formula to compute the function evaluation.
ln_hyp_term_alt = np.log(hyp2f1(_c - _a, _c - _b, _c, _z)) + (_c - _a - _b) * np.log(1 - _z)
ln_hyp_term = np.where(np.isinf(ln_hyp_term), ln_hyp_term_alt, ln_hyp_term)
first_term = (a + b + x - 1) / (a - 1)
second_term = 1 - np.exp(ln_hyp_term + (r + x) * np.log((alpha + T) / (alpha + t + T)))
numerator = first_term * second_term
denominator = 1 + (x > 0) * (a / (b + x - 1)) * ((alpha + T) / (alpha + recency)) ** (r + x)
return numerator / denominator
示例12: probability_of_n_purchases_up_to_time
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def probability_of_n_purchases_up_to_time(
self,
t,
n
):
r"""
Compute the probability of n purchases.
.. math:: P( N(t) = n | \text{model} )
where N(t) is the number of repeat purchases a customer makes in t
units of time.
Comes from equation (8) of [2]_.
Parameters
----------
t: float
number units of time
n: int
number of purchases
Returns
-------
float:
Probability to have n purchases up to t units of time
References
----------
.. [2] Fader, Peter S., Bruce G.S. Hardie, and Ka Lok Lee (2005a),
"Counting Your Customers the Easy Way: An Alternative to the
Pareto/NBD Model," Marketing Science, 24 (2), 275-84.
"""
r, alpha, a, b = self._unload_params("r", "alpha", "a", "b")
first_term = (
beta(a, b + n)
/ beta(a, b)
* gamma(r + n)
/ gamma(r)
/ gamma(n + 1)
* (alpha / (alpha + t)) ** r
* (t / (alpha + t)) ** n
)
if n > 0:
j = np.arange(0, n)
finite_sum = (gamma(r + j) / gamma(r) / gamma(j + 1) * (t / (alpha + t)) ** j).sum()
second_term = beta(a + 1, b + n - 1) / beta(a, b) * (1 - (alpha / (alpha + t)) ** r * finite_sum)
else:
second_term = 0
return first_term + second_term