當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.where方法代碼示例

本文整理匯總了Python中autograd.numpy.where方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.where方法的具體用法?Python numpy.where怎麽用?Python numpy.where使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.where方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: one_of_K_code

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def one_of_K_code(arr):
    """
    Make a one-of-K coding out of the numpy array.
    For example, if arr = ([0, 1, 0, 2]), then return a 2d array of the form 
     [[1, 0, 0], 
      [0, 1, 0],
      [1, 0, 0],
      [0, 0, 1]]
    """
    U = np.unique(arr)
    n = len(arr)
    nu = len(U)
    X = np.zeros((n, nu))
    for i, u in enumerate(U):
        Ii = np.where( np.abs(arr - u) < 1e-8 )
        #ni = len(Ii)
        X[Ii[0], i] = 1
    return X 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:20,代碼來源:util.py

示例2: filter

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def filter(self, niter = 20, k = 5):
        """ Applies wavelet iterative filtering to denoise the image

        Parameters
        ----------
        niter: int
            number of iterations
        k: float
            threshold in units of noise levels below which coefficients are thresholded
        lvl: int
            Number of wavelet scale to use in the decomposition

        Results
        -------
        filtered: array
            the image of filtered images
        """
        if self._coeffs is None:
            self.coefficients
        if self._image is None:
            self.image()
        sigma = k * mad_wavelet(self._image)[:, None] * self.norm[None, :]

        filtered = 0
        image = self._image
        wavelet = self._coeffs
        support = np.where(np.abs(wavelet[:,:-1,:,:]) < sigma[:,:-1,None, None] * np.ones_like(wavelet[:,:-1,:,:]))
        for i in range(niter):
            R = image - filtered
            R_coeff = Starlet(R)
            R_coeff.coefficients[support] = 0
            filtered += R_coeff.image
            filtered[filtered < 0] = 0
        self.image = filtered
        return filtered 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:37,代碼來源:wavelet.py

示例3: add_control_surface

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def add_control_surface(self, deflection=0., hinge_point=0.75):
        # Returns a version of the airfoil with a control surface added at a given point.
        # Inputs:
        #   # deflection: the deflection angle, in degrees. Downwards-positive.
        #   # hinge_point: the location of the hinge, as a fraction of chord.

        # Make the rotation matrix for the given angle.
        sintheta = np.sin(np.radians(-deflection))
        costheta = np.cos(np.radians(-deflection))
        rotation_matrix = np.array(
            [[costheta, -sintheta],
             [sintheta, costheta]]
        )

        # Find the hinge point
        hinge_point = np.array(
            (hinge_point, self.get_camber_at_chord_fraction(hinge_point)))  # Make hinge_point a vector.

        # Split the airfoil into the sections before and after the hinge
        split_index = np.where(self.mcl_coordinates[:, 0] > hinge_point[0])[0][0]
        mcl_coordinates_before = self.mcl_coordinates[:split_index, :]
        mcl_coordinates_after = self.mcl_coordinates[split_index:, :]
        upper_minus_mcl_before = self.upper_minus_mcl[:split_index, :]
        upper_minus_mcl_after = self.upper_minus_mcl[split_index:, :]

        # Rotate the mean camber line (MCL) and "upper minus mcl"
        new_mcl_coordinates_after = np.transpose(
            rotation_matrix @ np.transpose(mcl_coordinates_after - hinge_point)) + hinge_point
        new_upper_minus_mcl_after = np.transpose(rotation_matrix @ np.transpose(upper_minus_mcl_after))

        # Do blending

        # Assemble airfoil
        new_mcl_coordinates = np.vstack((mcl_coordinates_before, new_mcl_coordinates_after))
        new_upper_minus_mcl = np.vstack((upper_minus_mcl_before, new_upper_minus_mcl_after))
        upper_coordinates = np.flipud(new_mcl_coordinates + new_upper_minus_mcl)
        lower_coordinates = new_mcl_coordinates - new_upper_minus_mcl
        coordinates = np.vstack((upper_coordinates, lower_coordinates[1:, :]))

        new_airfoil = Airfoil(name=self.name + " flapped", coordinates=coordinates, repanel=False)
        return new_airfoil  # TODO fix self-intersecting airfoils at high deflections 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:43,代碼來源:geometry.py

示例4: conditional_probability_alive

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def conditional_probability_alive(
        self, 
        frequency, 
        recency, 
        T
    ):
        """
        Compute conditional probability alive.

        Compute the probability that a customer with history
        (frequency, recency, T) is currently alive.

        From http://www.brucehardie.com/notes/021/palive_for_BGNBD.pdf

        Parameters
        ----------
        frequency: array or scalar
            historical frequency of customer.
        recency: array or scalar
            historical recency of customer.
        T: array or scalar
            age of the customer.

        Returns
        -------
        array
            value representing a probability
        """

        r, alpha, a, b = self._unload_params("r", "alpha", "a", "b")

        log_div = (r + frequency) * np.log((alpha + T) / (alpha + recency)) + np.log(
            a / (b + np.maximum(frequency, 1) - 1)
        )

        return np.atleast_1d(np.where(frequency == 0, 1.0, expit(-log_div))) 
開發者ID:CamDavidsonPilon,項目名稱:lifetimes,代碼行數:38,代碼來源:beta_geo_fitter.py

示例5: normalize

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def normalize(a):
    def replace_zeros(a):
        return np.where(a > 0., a, 1.)
    return a / replace_zeros(a.sum(-1, keepdims=True)) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:6,代碼來源:hmm_em.py

示例6: grad_poisson_logpmf

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def grad_poisson_logpmf(k, mu):
    return np.where(k % 1 == 0, k / mu - 1, 0) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:4,代碼來源:poisson.py

示例7: grad_chi2_logpdf

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def grad_chi2_logpdf(x, df):
    return np.where(df % 1 == 0, (df - x - 2) / (2 * x), 0) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:4,代碼來源:chi2.py

示例8: test_where

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def test_where():
    def fun(x, y):
        b = np.where(C, x, y)
        return b
    C = npr.randn(4, 5) > 0
    A = npr.randn(4, 5)
    B = npr.randn(4, 5)
    check_grads(fun)(A, B) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:10,代碼來源:test_numpy.py

示例9: fit

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def fit(self, X, y):
        X, y = check_X_y(X, y, estimator=self, dtype=FLOAT_DTYPES)
        if self.effect not in self.allowed_effects:
            raise ValueError(f"effect {self.effect} must be in {self.allowed_effects}")

        def deadzone(errors):
            if self.effect == "linear":
                return np.where(errors > self.threshold, errors, np.zeros(errors.shape))
            if self.effect == "quadratic":
                return np.where(
                    errors > self.threshold, errors ** 2, np.zeros(errors.shape)
                )

        def training_loss(weights):
            diff = np.abs(np.dot(X, weights) - y)
            if self.relative:
                diff = diff / y
            return np.mean(deadzone(diff))

        n, k = X.shape

        # Build a function that returns gradients of training loss using autograd.
        training_gradient_fun = grad(training_loss)

        # Check the gradients numerically, just to be safe.
        weights = np.random.normal(0, 1, k)
        if self.check_grad:
            check_grads(training_loss, modes=["rev"])(weights)

        # Optimize weights using gradient descent.
        self.loss_log_ = np.zeros(self.n_iter)
        self.wts_log_ = np.zeros((self.n_iter, k))
        self.deriv_log_ = np.zeros((self.n_iter, k))
        for i in range(self.n_iter):
            weights -= training_gradient_fun(weights) * self.stepsize
            self.wts_log_[i, :] = weights.ravel()
            self.loss_log_[i] = training_loss(weights)
            self.deriv_log_[i, :] = training_gradient_fun(weights).ravel()
        self.coefs_ = weights
        return self 
開發者ID:koaning,項目名稱:scikit-lego,代碼行數:42,代碼來源:linear_model.py

示例10: get_bounding_cube

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def get_bounding_cube(self):
        """ Finds the axis-aligned cube that encloses the airplane with the smallest size.
            Useful for plotting and getting a sense for the scale of a problem.
            
            Args:
                self.wings (iterable): All the wings included for analysis each containing their geometry in x,y,z notation using units of m
            Returns:
                tuple: Tuple of 4 floats x, y, z, and s, where x, y, and z are the coordinates of the cube center,
                and s is half of the side length.
        """

        # Get vertices to enclose
        vertices = None
        for wing in self.wings:
            for xsec in wing.xsecs:
                if vertices is None:
                    vertices = xsec.xyz_le + wing.xyz_le
                else:
                    vertices = np.vstack((
                        vertices,
                        xsec.xyz_le + wing.xyz_le
                    ))
                vertices = np.vstack((
                    vertices,
                    xsec.xyz_te() + wing.xyz_le
                ))

                if wing.symmetric:
                    vertices = np.vstack((
                        vertices,
                        reflect_over_XZ_plane(xsec.xyz_le + wing.xyz_le)
                    ))
                    vertices = np.vstack((
                        vertices,
                        reflect_over_XZ_plane(xsec.xyz_te() + wing.xyz_le)
                    ))

        # Enclose them
        x_max = np.max(vertices[:, 0])
        y_max = np.max(vertices[:, 1])
        z_max = np.max(vertices[:, 2])
        x_min = np.min(vertices[:, 0])
        y_min = np.min(vertices[:, 1])
        z_min = np.min(vertices[:, 2])

        x = np.mean((x_max, x_min))
        y = np.mean((y_max, y_min))
        z = np.mean((z_max, z_min))
        s = 0.5 * np.max((
            x_max - x_min,
            y_max - y_min,
            z_max - z_min
        ))

        return x, y, z, s 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:57,代碼來源:geometry.py

示例11: conditional_expected_number_of_purchases_up_to_time

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def conditional_expected_number_of_purchases_up_to_time(
        self, 
        t, 
        frequency, 
        recency, 
        T
    ):
        """
        Conditional expected number of purchases up to time.

        Calculate the expected number of repeat purchases up to time t for a
        randomly chosen individual from the population, given they have
        purchase history (frequency, recency, T).

        This function uses equation (10) from [2]_.

        Parameters
        ----------
        t: array_like
            times to calculate the expectation for.
        frequency: array_like
            historical frequency of customer.
        recency: array_like
            historical recency of customer.
        T: array_like
            age of the customer.

        Returns
        -------
        array_like

        References
        ----------
        .. [2] Fader, Peter S., Bruce G.S. Hardie, and Ka Lok Lee (2005a),
        "Counting Your Customers the Easy Way: An Alternative to the
        Pareto/NBD Model," Marketing Science, 24 (2), 275-84.
        """

        x = frequency
        r, alpha, a, b = self._unload_params("r", "alpha", "a", "b")

        _a = r + x
        _b = b + x
        _c = a + b + x - 1
        _z = t / (alpha + T + t)
        ln_hyp_term = np.log(hyp2f1(_a, _b, _c, _z))

        # if the value is inf, we are using a different but equivalent
        # formula to compute the function evaluation.
        ln_hyp_term_alt = np.log(hyp2f1(_c - _a, _c - _b, _c, _z)) + (_c - _a - _b) * np.log(1 - _z)
        ln_hyp_term = np.where(np.isinf(ln_hyp_term), ln_hyp_term_alt, ln_hyp_term)
        first_term = (a + b + x - 1) / (a - 1)
        second_term = 1 - np.exp(ln_hyp_term + (r + x) * np.log((alpha + T) / (alpha + t + T)))

        numerator = first_term * second_term
        denominator = 1 + (x > 0) * (a / (b + x - 1)) * ((alpha + T) / (alpha + recency)) ** (r + x)

        return numerator / denominator 
開發者ID:CamDavidsonPilon,項目名稱:lifetimes,代碼行數:60,代碼來源:beta_geo_fitter.py

示例12: probability_of_n_purchases_up_to_time

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import where [as 別名]
def probability_of_n_purchases_up_to_time(
        self, 
        t, 
        n
    ):
        r"""
        Compute the probability of n purchases.

         .. math::  P( N(t) = n | \text{model} )

        where N(t) is the number of repeat purchases a customer makes in t
        units of time.

        Comes from equation (8) of [2]_.

        Parameters
        ----------
        t: float
            number units of time
        n: int
            number of purchases

        Returns
        -------
        float:
            Probability to have n purchases up to t units of time

        References
        ----------
        .. [2] Fader, Peter S., Bruce G.S. Hardie, and Ka Lok Lee (2005a),
        "Counting Your Customers the Easy Way: An Alternative to the
        Pareto/NBD Model," Marketing Science, 24 (2), 275-84.
        """

        r, alpha, a, b = self._unload_params("r", "alpha", "a", "b")

        first_term = (
            beta(a, b + n)
            / beta(a, b)
            * gamma(r + n)
            / gamma(r)
            / gamma(n + 1)
            * (alpha / (alpha + t)) ** r
            * (t / (alpha + t)) ** n
        )

        if n > 0:
            j = np.arange(0, n)
            finite_sum = (gamma(r + j) / gamma(r) / gamma(j + 1) * (t / (alpha + t)) ** j).sum()
            second_term = beta(a + 1, b + n - 1) / beta(a, b) * (1 - (alpha / (alpha + t)) ** r * finite_sum)
        else:
            second_term = 0

        return first_term + second_term 
開發者ID:CamDavidsonPilon,項目名稱:lifetimes,代碼行數:56,代碼來源:beta_geo_fitter.py


注:本文中的autograd.numpy.where方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。