當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.vstack方法代碼示例

本文整理匯總了Python中autograd.numpy.vstack方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.vstack方法的具體用法?Python numpy.vstack怎麽用?Python numpy.vstack使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.vstack方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: make_IO_matrices

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import vstack [as 別名]
def make_IO_matrices(indices, N):
    """ Makes matrices that relate the sparse matrix entries to their locations in the matrix
            The kth column of I is a 'one hot' vector specifing the k-th entries row index into A
            The kth column of J is a 'one hot' vector specifing the k-th entries columnn index into A
            O = J^T is for notational convenience.
            Armed with a vector of M entries 'a', we can construct the sparse matrix 'A' as:
                A = I @ diag(a) @ O
            where 'diag(a)' is a (MxM) matrix with vector 'a' along its diagonal.
            In index notation:
                A_ij = I_ik * a_k * O_kj
            In an opposite way, given sparse matrix 'A' we can strip out the entries `a` using the IO matrices as follows:
                a = diag(I^T @ A @ O^T)
            In index notation:
                a_k = I_ik * A_ij * O_kj
    """
    M = indices.shape[1]                                 # number of indices in the matrix
    entries_1 = npa.ones(M)                              # M entries of all 1's
    ik, jk = indices                                     # separate i and j components of the indices
    indices_I = npa.vstack((ik, npa.arange(M)))          # indices into the I matrix
    indices_J = npa.vstack((jk, npa.arange(M)))          # indices into the J matrix
    I = make_sparse(entries_1, indices_I, shape=(N, M))  # construct the I matrix
    J = make_sparse(entries_1, indices_J, shape=(N, M))  # construct the J matrix
    O = J.T                                              # make O = J^T matrix for consistency with my notes.
    return I, O 
開發者ID:fancompute,項目名稱:ceviche,代碼行數:26,代碼來源:utils.py

示例2: _make_A

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import vstack [as 別名]
def _make_A(self, eps_vec):

        eps_vec_xx, eps_vec_yy = self._grid_average_2d(eps_vec)
        eps_vec_xx_inv = 1 / (eps_vec_xx + 1e-5)  # the 1e-5 is for numerical stability
        eps_vec_yy_inv = 1 / (eps_vec_yy + 1e-5)  # autograd throws 'divide by zero' errors.

        indices_diag = npa.vstack((npa.arange(self.N), npa.arange(self.N)))

        entries_DxEpsy,   indices_DxEpsy   = spsp_mult(self.entries_Dxb, self.indices_Dxb, eps_vec_yy_inv, indices_diag, self.N)
        entires_DxEpsyDx, indices_DxEpsyDx = spsp_mult(entries_DxEpsy, indices_DxEpsy, self.entries_Dxf, self.indices_Dxf, self.N)

        entries_DyEpsx,   indices_DyEpsx   = spsp_mult(self.entries_Dyb, self.indices_Dyb, eps_vec_xx_inv, indices_diag, self.N)
        entires_DyEpsxDy, indices_DyEpsxDy = spsp_mult(entries_DyEpsx, indices_DyEpsx, self.entries_Dyf, self.indices_Dyf, self.N)

        entries_d = 1 / EPSILON_0 * npa.hstack((entires_DxEpsyDx, entires_DyEpsxDy))
        indices_d = npa.hstack((indices_DxEpsyDx, indices_DyEpsxDy))

        entries_diag = MU_0 * self.omega**2 * npa.ones(self.N)

        entries_a = npa.hstack((entries_d, entries_diag))
        indices_a = npa.hstack((indices_d, indices_diag))

        return entries_a, indices_a 
開發者ID:fancompute,項目名稱:ceviche,代碼行數:25,代碼來源:fdfd.py

示例3: job_me_opt

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import vstack [as 別名]
def job_me_opt(p, data_source, tr, te, r, J=5):
    """
    ME test of Jitkrittum et al., 2016 used as a goodness-of-fit test.
    Gaussian kernel. Optimize test locations and Gaussian width.
    """
    data = tr + te
    X = data.data()
    with util.ContextTimer() as t:
        # median heuristic 
        #pds = p.get_datasource()
        #datY = pds.sample(data.sample_size(), seed=r+294)
        #Y = datY.data()
        #XY = np.vstack((X, Y))
        #med = util.meddistance(XY, subsample=1000)
        op = {'n_test_locs': J, 'seed': r+5, 'max_iter': 40, 
             'batch_proportion': 1.0, 'locs_step_size': 1.0, 
              'gwidth_step_size': 0.1, 'tol_fun': 1e-4, 
              'reg': 1e-4}
        # optimize on the training set
        me_opt = tgof.GaussMETestOpt(p, n_locs=J, tr_proportion=tr_proportion,
                alpha=alpha, seed=r+111)

        me_result = me_opt.perform_test(data, op)
    return { 'test_result': me_result, 'time_secs': t.secs} 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:26,代碼來源:ex2_prob_params.py

示例4: sample

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import vstack [as 別名]
def sample(self, n, seed=29):
        pmix = self.pmix
        means = self.means
        variances = self.variances
        k, d = self.means.shape
        sam_list = []
        with util.NumpySeedContext(seed=seed):
            # counts for each mixture component 
            counts = np.random.multinomial(n, pmix, size=1)

            # counts is a 2d array
            counts = counts[0]

            # For each component, draw from its corresponding mixture component.            
            for i, nc in enumerate(counts):
                # Sample from ith component
                sam_i = np.random.randn(nc, d)*np.sqrt(variances[i]) + means[i]
                sam_list.append(sam_i)
            sample = np.vstack(sam_list)
            assert sample.shape[0] == n
            np.random.shuffle(sample)
        return Data(sample)

# end of class DSIsoGaussianMixture 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:26,代碼來源:data.py

示例5: _ntied_transmat_prior

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import vstack [as 別名]
def _ntied_transmat_prior(self, transmat_val):  # TODO: document choices
        transmat = np.empty((0, self.n_components))
        for r in range(self.n_unique):
            row = np.empty((self.n_chain, 0))
            for c in range(self.n_unique):
                if r == c:
                    subm = np.array(sp.diags([transmat_val[r, c],
                                    1.0], [0, 1],
                        shape=(self.n_chain, self.n_chain)).todense())
                else:
                    lower_left = np.zeros((self.n_chain, self.n_chain))
                    lower_left[self.n_tied, 0] = 1.0
                    subm = np.kron(transmat_val[r, c], lower_left)
                row = np.hstack((row, subm))
            transmat = np.vstack((transmat, row))
        return transmat 
開發者ID:mackelab,項目名稱:autohmm,代碼行數:18,代碼來源:tm.py

示例6: get_sharp_TE_airfoil

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import vstack [as 別名]
def get_sharp_TE_airfoil(self):
        # Returns a version of the airfoil with a sharp trailing edge.

        upper_original_coors = self.upper_coordinates()  # Note: includes leading edge point, be careful about duplicates
        lower_original_coors = self.lower_coordinates()  # Note: includes leading edge point, be careful about duplicates

        # Find data about the TE

        # Get the scale factor
        x_mcl = self.mcl_coordinates[:, 0]
        x_max = np.max(x_mcl)
        x_min = np.min(x_mcl)
        scale_factor = (x_mcl - x_min) / (x_max - x_min)  # linear contraction

        # Do the contraction
        upper_minus_mcl_adjusted = self.upper_minus_mcl - self.upper_minus_mcl[-1, :] * np.expand_dims(scale_factor, 1)

        # Recreate coordinates
        upper_coordinates_adjusted = np.flipud(self.mcl_coordinates + upper_minus_mcl_adjusted)
        lower_coordinates_adjusted = self.mcl_coordinates - upper_minus_mcl_adjusted

        coordinates = np.vstack((
            upper_coordinates_adjusted[:-1, :],
            lower_coordinates_adjusted
        ))

        # Make a new airfoil with the coordinates
        name = self.name + ", with sharp TE"
        new_airfoil = Airfoil(name=name, coordinates=coordinates, repanel=False)

        return new_airfoil 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:33,代碼來源:geometry.py

示例7: add_control_surface

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import vstack [as 別名]
def add_control_surface(self, deflection=0., hinge_point=0.75):
        # Returns a version of the airfoil with a control surface added at a given point.
        # Inputs:
        #   # deflection: the deflection angle, in degrees. Downwards-positive.
        #   # hinge_point: the location of the hinge, as a fraction of chord.

        # Make the rotation matrix for the given angle.
        sintheta = np.sin(np.radians(-deflection))
        costheta = np.cos(np.radians(-deflection))
        rotation_matrix = np.array(
            [[costheta, -sintheta],
             [sintheta, costheta]]
        )

        # Find the hinge point
        hinge_point = np.array(
            (hinge_point, self.get_camber_at_chord_fraction(hinge_point)))  # Make hinge_point a vector.

        # Split the airfoil into the sections before and after the hinge
        split_index = np.where(self.mcl_coordinates[:, 0] > hinge_point[0])[0][0]
        mcl_coordinates_before = self.mcl_coordinates[:split_index, :]
        mcl_coordinates_after = self.mcl_coordinates[split_index:, :]
        upper_minus_mcl_before = self.upper_minus_mcl[:split_index, :]
        upper_minus_mcl_after = self.upper_minus_mcl[split_index:, :]

        # Rotate the mean camber line (MCL) and "upper minus mcl"
        new_mcl_coordinates_after = np.transpose(
            rotation_matrix @ np.transpose(mcl_coordinates_after - hinge_point)) + hinge_point
        new_upper_minus_mcl_after = np.transpose(rotation_matrix @ np.transpose(upper_minus_mcl_after))

        # Do blending

        # Assemble airfoil
        new_mcl_coordinates = np.vstack((mcl_coordinates_before, new_mcl_coordinates_after))
        new_upper_minus_mcl = np.vstack((upper_minus_mcl_before, new_upper_minus_mcl_after))
        upper_coordinates = np.flipud(new_mcl_coordinates + new_upper_minus_mcl)
        lower_coordinates = new_mcl_coordinates - new_upper_minus_mcl
        coordinates = np.vstack((upper_coordinates, lower_coordinates[1:, :]))

        new_airfoil = Airfoil(name=self.name + " flapped", coordinates=coordinates, repanel=False)
        return new_airfoil  # TODO fix self-intersecting airfoils at high deflections 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:43,代碼來源:geometry.py

示例8: convert_results

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import vstack [as 別名]
def convert_results(results, interface):
        """Convert a list of results coming from multiple QNodes
        to the object required by each interface for auto-differentiation.

        Internally, this method makes use of ``tf.stack``, ``torch.stack``,
        and ``np.vstack``.

        Args:
            results (list): list containing the results from
                multiple QNodes
            interface (str): the interfaces of the underlying QNodes

        Returns:
            list or array or torch.Tensor or tf.Tensor: the converted
            and stacked results.
        """
        if interface == "tf":
            import tensorflow as tf

            return tf.stack(results)

        if interface == "torch":
            import torch

            return torch.stack(results, dim=0)

        if interface in ("autograd", "numpy"):
            from autograd import numpy as np

            return np.stack(results)

        return results 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:34,代碼來源:qnode_collection.py

示例9: gmm_log_likelihood

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import vstack [as 別名]
def gmm_log_likelihood(params, data):
    cluster_lls = []
    for log_proportion, mean, cov_sqrt in zip(*unpack_gmm_params(params)):
        cov = np.dot(cov_sqrt.T, cov_sqrt)
        cluster_lls.append(log_proportion + mvn.logpdf(data, mean, cov))
    return np.sum(logsumexp(np.vstack(cluster_lls), axis=0)) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:8,代碼來源:gmm.py

示例10: plot_ellipse

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import vstack [as 別名]
def plot_ellipse(ax, mean, cov_sqrt, alpha, num_points=100):
    angles = np.linspace(0, 2*np.pi, num_points)
    circle_pts = np.vstack([np.cos(angles), np.sin(angles)]).T * 2.0
    cur_pts = mean + np.dot(circle_pts, cov_sqrt)
    ax.plot(cur_pts[:, 0], cur_pts[:, 1], '-', alpha=alpha) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:7,代碼來源:gmm.py

示例11: test_jacobian_against_stacked_grads

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import vstack [as 別名]
def test_jacobian_against_stacked_grads():
    scalar_funs = [
        lambda x: np.sum(x**3),
        lambda x: np.prod(np.sin(x) + np.sin(x)),
        lambda x: grad(lambda y: np.exp(y) * np.tanh(x[0]))(x[1])
    ]

    vector_fun = lambda x: np.array([f(x) for f in scalar_funs])

    x = npr.randn(5)
    jac = jacobian(vector_fun)(x)
    grads = [grad(f)(x) for f in scalar_funs]

    assert np.allclose(jac, np.vstack(grads)) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:16,代碼來源:test_jacobian.py

示例12: test_vstack_1d

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import vstack [as 別名]
def test_vstack_1d(): combo_check(np.vstack, [0])([R(2), (R(2), R(2))]) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:3,代碼來源:test_systematic.py

示例13: test_vstack_3d

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import vstack [as 別名]
def test_vstack_3d(): combo_check(np.vstack, [0])([R(2, 3, 4), (R(2, 3, 4), R(5, 3, 4))]) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:3,代碼來源:test_systematic.py

示例14: get_entries_indices

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import vstack [as 別名]
def get_entries_indices(csr_matrix):
    # takes sparse matrix and returns the entries and indeces in form compatible with 'make_sparse'
    shape = csr_matrix.shape
    coo_matrix = csr_matrix.tocoo()
    entries = csr_matrix.data
    cols = coo_matrix.col
    rows = coo_matrix.row
    indices = npa.vstack((rows, cols))
    return entries, indices 
開發者ID:fancompute,項目名稱:ceviche,代碼行數:11,代碼來源:utils.py

示例15: block_4

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import vstack [as 別名]
def block_4(A, B, C, D):
    """ Constructs a big matrix out of four sparse blocks
        returns [A B]
                [C D]
    """
    left = sp.vstack([A, C])
    right = sp.vstack([B, D])
    return sp.hstack([left, right]) 
開發者ID:fancompute,項目名稱:ceviche,代碼行數:10,代碼來源:utils.py


注:本文中的autograd.numpy.vstack方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。