當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.transpose方法代碼示例

本文整理匯總了Python中autograd.numpy.transpose方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.transpose方法的具體用法?Python numpy.transpose怎麽用?Python numpy.transpose使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.transpose方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: G

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import transpose [as 別名]
def G(self):
        full_W = np.array([node.w for node in self.nodes])
        WB = full_W[:,1:].reshape((self.K,self.K, self.B))

        # Weight matrix is summed over impulse response functions
        WT = WB.sum(axis=2)

        # Impulse response weights are normalized weights
        GT = WB / WT[:,:,None]

        # Then we transpose so that the impuolse matrix is (outgoing x incoming x basis)
        G = np.transpose(GT, [1,0,2])

        # TODO: Decide if this is still necessary
        for k1 in range(self.K):
            for k2 in range(self.K):
                if G[k1,k2,:].sum() < 1e-2:
                    G[k1,k2,:] = 1.0/self.B
        return G 
開發者ID:slinderman,項目名稱:pyhawkes,代碼行數:21,代碼來源:standard_models.py

示例2: _process_event

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import transpose [as 別名]
def _process_event(self, event):
        e_type = self.demo._event_type(event)
        if e_type == 'leaf':
            self._process_leaf_likelihood(event)
        elif e_type == 'merge_subpops':
            self._process_merge_subpops_likelihood(event)
        elif e_type == 'merge_clusters':
            self._process_merge_clusters_likelihood(event)
        elif e_type == 'pulse':
            self._process_pulse_likelihood(event)
        else:
            raise Exception("Unrecognized event type.")

        for newpop in self.demo._parent_pops(event):
            lik = self._get_likelihoods(newpop)
            lik.make_last_axis(newpop)
            n = lik.get_last_axis_n()
            if n > 0:
                lik.add_last_axis_sfs(self.demo._truncated_sfs(newpop))
                if event != self.demo._event_root:
                    lik.matmul_last_axis(
                        np.transpose(moran_transition(
                            self.demo._scaled_time(newpop), n))) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:25,代碼來源:compute_sfs.py

示例3: _get_subsample_counts

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import transpose [as 別名]
def _get_subsample_counts(configs, n):
    subconfigs, weights = [], []
    for pop_comb in it.combinations_with_replacement(configs.sampled_pops, n):
        subsample_n = co.Counter(pop_comb)
        subsample_n = np.array([subsample_n[pop]
                                for pop in configs.sampled_pops], dtype=int)
        if np.any(subsample_n > configs.sampled_n):
            continue

        for sfs_entry in it.product(*(range(sub_n + 1)
                                      for sub_n in subsample_n)):
            sfs_entry = np.array(sfs_entry, dtype=int)
            if np.all(sfs_entry == 0) or np.all(sfs_entry == subsample_n):
                # monomorphic
                continue

            sfs_entry = np.transpose([subsample_n - sfs_entry, sfs_entry])
            cnt_vec = configs.subsample_probs(sfs_entry)
            if not np.all(cnt_vec == 0):
                subconfigs.append(sfs_entry)
                weights.append(cnt_vec)

    return np.array(subconfigs), np.array(weights) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:25,代碼來源:sfs.py

示例4: build_config_list

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import transpose [as 別名]
def build_config_list(sampled_pops, counts, sampled_n=None, ascertainment_pop=None):
    """
    if sampled_n is not None, counts is the derived allele counts

    if sampled_n is None, counts has an extra trailing axis:
      counts[...,0] is ancestral allele count,
      counts[...,1] is derived allele count
    """
    if sampled_n is not None:
        sampled_n = np.array(sampled_n, dtype=int)
        counts1 = np.array(counts, dtype=int, ndmin=2)
        counts0 = sampled_n - counts1
        counts = np.array([counts0, counts1], dtype=int)
        counts = np.transpose(counts, axes=[1, 2, 0])
    counts = np.array(counts, ndmin=3, dtype=int)
    assert counts.shape[1:] == (len(sampled_pops), 2)
    counts.setflags(write=False)
    return ConfigList(sampled_pops, counts, sampled_n, ascertainment_pop) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:20,代碼來源:configurations.py

示例5: W

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import transpose [as 別名]
def W(self):
        full_W = np.array([node.w for node in self.nodes])
        WB = full_W[:,1:].reshape((self.K,self.K, self.B))

        # Weight matrix is summed over impulse response functions
        WT = WB.sum(axis=2)

        # Then we transpose so that the weight matrix is (outgoing x incoming)
        W = WT.T
        return W 
開發者ID:slinderman,項目名稱:pyhawkes,代碼行數:12,代碼來源:standard_models.py

示例6: check_symmetric

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import transpose [as 別名]
def check_symmetric(X):
    Xt = np.transpose(X)
    assert np.allclose(X, Xt)
    return 0.5 * (X + Xt) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:6,代碼來源:util.py

示例7: check_psd

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import transpose [as 別名]
def check_psd(X, **tol_kwargs):
    X = check_symmetric(X)
    d, U = np.linalg.eigh(X)
    d = truncate0(d, **tol_kwargs)
    ret = np.dot(U, np.dot(np.diag(d), np.transpose(U)))
    #assert np.allclose(ret, X)
    return np.array(ret, ndmin=2) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:9,代碼來源:util.py

示例8: make_last_axis

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import transpose [as 別名]
def make_last_axis(self, pop):
        axis = self.pop_axis(pop)
        perm = [i for i in range(self.n_axes)
                if i != axis] + [axis]
        self.liks = np.transpose(self.liks, perm)
        self.pop_labels = [p for p in self.pop_labels if p != pop] + [pop]
        assert len(self.pop_labels) + 1 == len(self.liks.shape) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:9,代碼來源:compute_sfs.py

示例9: _vecs_and_idxs

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import transpose [as 別名]
def _vecs_and_idxs(self, folded):
        augmented_configs = self._augmented_configs(folded)
        augmented_idxs = self._augmented_idxs(folded)

        # construct the vecs
        vecs = [np.zeros((len(augmented_configs), n + 1))
                for n in self.sampled_n]

        for i in range(len(vecs)):
            n = self.sampled_n[i]
            derived = np.einsum(
                "i,j->ji", np.ones(len(augmented_configs)), np.arange(n + 1))
            curr = scipy.stats.hypergeom.pmf(
                    k=augmented_configs[:, i, 1],
                    M=n,
                    n=derived,
                    N=augmented_configs[:, i].sum(1)
                )
            assert not np.any(np.isnan(curr))
            vecs[i] = np.transpose(curr)

        # copy augmented_idxs to make it safe
        return vecs, dict(augmented_idxs)

    # def _config_str_iter(self):
    #     for c in self.value:
    #         yield _config2hashable(c) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:29,代碼來源:configurations.py

示例10: _transpose

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import transpose [as 別名]
def _transpose(in_arr, in_sublist, out_sublist):
    if set(in_sublist) != set(out_sublist):
        raise ValueError("Input and output subscripts don't match")
    for sublist in (in_sublist, out_sublist):
        if len(set(sublist)) != len(sublist):
            raise NotImplementedError("Repeated subscripts not implemented")
    in_idxs = {k:v for v,k in enumerate(in_sublist)}
    return np.transpose(in_arr, axes=[in_idxs[s] for s in out_sublist]) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:10,代碼來源:einsum2.py

示例11: test_grad

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import transpose [as 別名]
def test_grad():
    p = .05
    def fun0(B, Bdims):
        return einsum2.einsum2(np.exp(B**2), Bdims, np.transpose(B), Bdims[::-1], [])
    def fun1(B, Bdims):
        if Bdims: Bdims = list(range(len(Bdims)))
        return np.einsum(np.exp(B**2), Bdims,
                         np.transpose(B), Bdims[::-1], [])
    grad0 = autograd.grad(fun0)
    grad1 = autograd.grad(fun1)
    B, Bdims = random_tensor(p)
    assert np.allclose(grad0(B, Bdims), grad1(B, Bdims)) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:14,代碼來源:test_einsum2.py

示例12: add_control_surface

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import transpose [as 別名]
def add_control_surface(self, deflection=0., hinge_point=0.75):
        # Returns a version of the airfoil with a control surface added at a given point.
        # Inputs:
        #   # deflection: the deflection angle, in degrees. Downwards-positive.
        #   # hinge_point: the location of the hinge, as a fraction of chord.

        # Make the rotation matrix for the given angle.
        sintheta = np.sin(np.radians(-deflection))
        costheta = np.cos(np.radians(-deflection))
        rotation_matrix = np.array(
            [[costheta, -sintheta],
             [sintheta, costheta]]
        )

        # Find the hinge point
        hinge_point = np.array(
            (hinge_point, self.get_camber_at_chord_fraction(hinge_point)))  # Make hinge_point a vector.

        # Split the airfoil into the sections before and after the hinge
        split_index = np.where(self.mcl_coordinates[:, 0] > hinge_point[0])[0][0]
        mcl_coordinates_before = self.mcl_coordinates[:split_index, :]
        mcl_coordinates_after = self.mcl_coordinates[split_index:, :]
        upper_minus_mcl_before = self.upper_minus_mcl[:split_index, :]
        upper_minus_mcl_after = self.upper_minus_mcl[split_index:, :]

        # Rotate the mean camber line (MCL) and "upper minus mcl"
        new_mcl_coordinates_after = np.transpose(
            rotation_matrix @ np.transpose(mcl_coordinates_after - hinge_point)) + hinge_point
        new_upper_minus_mcl_after = np.transpose(rotation_matrix @ np.transpose(upper_minus_mcl_after))

        # Do blending

        # Assemble airfoil
        new_mcl_coordinates = np.vstack((mcl_coordinates_before, new_mcl_coordinates_after))
        new_upper_minus_mcl = np.vstack((upper_minus_mcl_before, new_upper_minus_mcl_after))
        upper_coordinates = np.flipud(new_mcl_coordinates + new_upper_minus_mcl)
        lower_coordinates = new_mcl_coordinates - new_upper_minus_mcl
        coordinates = np.vstack((upper_coordinates, lower_coordinates[1:, :]))

        new_airfoil = Airfoil(name=self.name + " flapped", coordinates=coordinates, repanel=False)
        return new_airfoil  # TODO fix self-intersecting airfoils at high deflections 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:43,代碼來源:geometry.py

示例13: convolve

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import transpose [as 別名]
def convolve(A, B, axes=None, dot_axes=[(),()], mode='full'):
    assert mode in ['valid', 'full'], "Mode {0} not yet implemented".format(mode)
    if axes is None:
        axes = [list(range(A.ndim)), list(range(A.ndim))]
    wrong_order = any([B.shape[ax_B] < A.shape[ax_A] for ax_A, ax_B in zip(*axes)])
    if wrong_order:
        if mode=='valid' and not all([B.shape[ax_B] <= A.shape[ax_A] for ax_A, ax_B in zip(*axes)]):
                raise Exception("One array must be larger than the other along all convolved dimensions")
        elif mode != 'full' or B.size <= A.size: # Tie breaker
            i1 =      B.ndim - len(dot_axes[1]) - len(axes[1]) # B ignore
            i2 = i1 + A.ndim - len(dot_axes[0]) - len(axes[0]) # A ignore
            i3 = i2 + len(axes[0])
            ignore_B = list(range(i1))
            ignore_A = list(range(i1, i2))
            conv     = list(range(i2, i3))
            return convolve(B, A, axes=axes[::-1], dot_axes=dot_axes[::-1], mode=mode).transpose(ignore_A + ignore_B + conv)

    if mode == 'full':
        B = pad_to_full(B, A, axes[::-1])
    B_view_shape = list(B.shape)
    B_view_strides = list(B.strides)
    flipped_idxs = [slice(None)] * A.ndim
    for ax_A, ax_B in zip(*axes):
        B_view_shape.append(abs(B.shape[ax_B] - A.shape[ax_A]) + 1)
        B_view_strides.append(B.strides[ax_B])
        B_view_shape[ax_B] = A.shape[ax_A]
        flipped_idxs[ax_A] = slice(None, None, -1)
    B_view = as_strided(B, B_view_shape, B_view_strides)
    A_view = A[tuple(flipped_idxs)]
    all_axes = [list(axes[i]) + list(dot_axes[i]) for i in [0, 1]]
    return einsum_tensordot(A_view, B_view, all_axes) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:33,代碼來源:signal.py

示例14: grad_convolve

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import transpose [as 別名]
def grad_convolve(argnum, ans, A, B, axes=None, dot_axes=[(),()], mode='full'):
    assert mode in ['valid', 'full'], "Grad for mode {0} not yet implemented".format(mode)
    axes, shapes = parse_axes(A.shape, B.shape, axes, dot_axes, mode)
    if argnum == 0:
        X, Y = A, B
        _X_, _Y_ = 'A', 'B'
        ignore_Y = 'ignore_B'
    elif argnum == 1:
        X, Y = B, A
        _X_, _Y_ = 'B', 'A'
        ignore_Y = 'ignore_A'
    else:
        raise NotImplementedError("Can't take grad of convolve w.r.t. arg {0}".format(argnum))

    if mode == 'full':
        new_mode = 'valid'
    else:
        if any([x_size > y_size for x_size, y_size in zip(shapes[_X_]['conv'], shapes[_Y_]['conv'])]):
            new_mode = 'full'
        else:
            new_mode = 'valid'

    def vjp(g):
        result = convolve(g, Y[flipped_idxs(Y.ndim, axes[_Y_]['conv'])],
                          axes     = [axes['out']['conv'],   axes[_Y_]['conv']],
                          dot_axes = [axes['out'][ignore_Y], axes[_Y_]['ignore']],
                          mode     = new_mode)
        new_order = npo.argsort(axes[_X_]['ignore'] + axes[_X_]['dot'] + axes[_X_]['conv'])
        return np.transpose(result, new_order)
    return vjp 
開發者ID:HIPS,項目名稱:autograd,代碼行數:32,代碼來源:signal.py

示例15: _vjp_sqrtm

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import transpose [as 別名]
def _vjp_sqrtm(ans, A, disp=True, blocksize=64):
    assert disp, "sqrtm vjp not implemented for disp=False"
    ans_transp = anp.transpose(ans)
    def vjp(g):
        return anp.real(solve_sylvester(ans_transp, ans_transp, g))
    return vjp 
開發者ID:HIPS,項目名稱:autograd,代碼行數:8,代碼來源:linalg.py


注:本文中的autograd.numpy.transpose方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。