本文整理匯總了Python中autograd.numpy.tile方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.tile方法的具體用法?Python numpy.tile怎麽用?Python numpy.tile使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類autograd.numpy
的用法示例。
在下文中一共展示了numpy.tile方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: jacobian_and_value
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import tile [as 別名]
def jacobian_and_value(fun, x):
"""
Makes a function that returns both the Jacobian and value of a function.
Assumes that the function `fun` broadcasts along the first dimension of the
input being differentiated with respect to such that a batch of outputs can
be computed concurrently for a batch of inputs.
"""
val = fun(x)
v_vspace = vspace(val)
x_vspace = vspace(x)
x_rep = np.tile(x, (v_vspace.size,) + (1,) * x_vspace.ndim)
vjp_rep, _ = make_vjp(fun, x_rep)
jacobian_shape = v_vspace.shape + x_vspace.shape
basis_vectors = np.array([b for b in v_vspace.standard_basis()])
jacobian = vjp_rep(basis_vectors)
return np.reshape(jacobian, jacobian_shape), val
示例2: hessian_grad_and_value
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import tile [as 別名]
def hessian_grad_and_value(fun, x):
"""
Makes a function that returns the Hessian, gradient & value of a function.
Assumes that the function `fun` broadcasts along the first dimension of the
input being differentiated with respect to such that a batch of outputs can
be computed concurrently for a batch of inputs.
"""
def grad_fun(x):
vjp, val = make_vjp(fun, x)
return vjp(vspace(val).ones()), val
x_vspace = vspace(x)
x_rep = np.tile(x, (x_vspace.size,) + (1,) * x_vspace.ndim)
vjp_grad, (grad, val) = make_vjp(lambda x: atuple(grad_fun(x)), x_rep)
hessian_shape = x_vspace.shape + x_vspace.shape
basis_vectors = np.array([b for b in x_vspace.standard_basis()])
hessian = vjp_grad((basis_vectors, vspace(val).zeros()))
return np.reshape(hessian, hessian_shape), grad[0], val[0]
示例3: outer_rows
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import tile [as 別名]
def outer_rows(X, Y):
"""
Compute the outer product of each row in X, and Y.
X: n x dx numpy array
Y: n x dy numpy array
Return an n x dx x dy numpy array.
"""
# Matlab way to do this. According to Jonathan Huggins, this is not
# efficient. Use einsum instead. See below.
#n, dx = X.shape
#dy = Y.shape[1]
#X_col_rep = X[:, np.tile(range(dx), (dy, 1)).T.reshape(-1) ]
#Y_tile = np.tile(Y, (1, dx))
#Z = X_col_rep*Y_tile
#return np.reshape(Z, (n, dx, dy))
return np.einsum('ij,ik->ijk', X, Y)
示例4: gradXY_sum
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import tile [as 別名]
def gradXY_sum(self, X, Y):
r"""
Compute \sum_{i=1}^d \frac{\partial^2 k(x, Y)}{\partial x_i \partial y_i}
evaluated at each x_i in X, and y_i in Y.
X: nx x d numpy array.
Y: ny x d numpy array.
Return a nx x ny numpy array of the derivatives.
"""
gamma = 1/X.shape[1] if self.gamma is None else self.gamma
if self.degree == 1: # optimization, other expression is valid too
return np.tile(gamma, (X.shape[0], X.shape[1]))
dot = np.dot(X, Y.T)
inside = gamma * dot + self.coef0
to_dminus2 = inside ** (self.degree - 2)
to_dminus1 = to_dminus2 * inside
return (
(self.degree * (self.degree-1) * gamma**2) * to_dminus2 * dot
+ (X.shape[1] * gamma * self.degree) * to_dminus1
)
示例5: _set_precision_prior
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import tile [as 別名]
def _set_precision_prior(self, precision_prior):
if precision_prior is None:
self._precision_prior_ = \
np.zeros((self.n_components, self.n_features, self.n_features))
else:
precision_prior = np.asarray(precision_prior)
if len(precision_prior) == 1:
self._precision_prior_ = np.tile(precision_prior,
(self.n_components, self.n_features, self.n_features))
elif \
(precision_prior.reshape(self.n_unique, self.n_features, self.n_features)).shape \
== (self.n_unique, self.n_features, self.n_features):
self._precision_prior_ = \
np.zeros((self.n_components, self.n_features, self.n_features))
for u in range(self.n_unique):
for t in range(self.n_chain):
self._precision_prior_[u*(self.n_chain)+t] = precision_prior[u].copy()
else:
raise ValueError("cannot match shape of precision_prior")
示例6: _set_startprob
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import tile [as 別名]
def _set_startprob(self, startprob):
if startprob is None:
startprob = np.tile(1.0 / self.n_components, self.n_components)
else:
startprob = np.asarray(startprob, dtype=np.float)
normalize(startprob)
if len(startprob) != self.n_components:
if len(startprob) == self.n_unique:
startprob_split = np.copy(startprob) / (1.0+self.n_tied)
startprob = np.zeros(self.n_components)
for u in range(self.n_unique):
for t in range(self.n_chain):
startprob[u*(self.n_chain)+t] = \
startprob_split[u].copy()
else:
raise ValueError("cannot match shape of startprob")
if not np.allclose(np.sum(startprob), 1.0):
raise ValueError('startprob must sum to 1.0')
self._log_startprob = np.log(np.asarray(startprob).copy())
示例7: _set_transmat
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import tile [as 別名]
def _set_transmat(self, transmat_val):
if transmat_val is None:
transmat = np.tile(1.0 / self.n_components,
(self.n_components, self.n_components))
else:
transmat_val[np.isnan(transmat_val)] = 0.0
normalize(transmat_val, axis=1)
if (np.asarray(transmat_val).shape == (self.n_components,
self.n_components)):
transmat = np.copy(transmat_val)
elif transmat_val.shape[0] == self.n_unique:
transmat = self._ntied_transmat(transmat_val)
else:
raise ValueError("cannot match shape of transmat")
if not np.all(np.allclose(np.sum(transmat, axis=1), 1.0)):
raise ValueError('Rows of transmat must sum to 1.0')
self._log_transmat = np.log(np.asarray(transmat).copy())
underflow_idx = np.isnan(self._log_transmat)
self._log_transmat[underflow_idx] = NEGINF
示例8: _calc_pareto_front
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import tile [as 別名]
def _calc_pareto_front(self, ref_dirs, *args, **kwargs):
F = super()._calc_pareto_front(ref_dirs, *args, **kwargs)
a = anp.sqrt(anp.sum(F ** 2, 1) - 3 / 4 * anp.max(F ** 2, axis=1))
a = anp.expand_dims(a, axis=1)
a = anp.tile(a, [1, ref_dirs.shape[1]])
F = F / a
return F
示例9: generic_sphere
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import tile [as 別名]
def generic_sphere(ref_dirs):
return ref_dirs / anp.tile(anp.linalg.norm(ref_dirs, axis=1)[:, None], (1, ref_dirs.shape[1]))
示例10: b
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import tile [as 別名]
def b(self, value):
assert value.shape == (self.num_states,)
self.logpi = np.tile(value[None, :], (self.num_states, 1))
示例11: resample
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import tile [as 別名]
def resample(self, stateseqs=None, covseqs=None,
n_steps=10, step_sz=0.01, **kwargs):
K, D = self.num_states, self.covariate_dim
# Run HMC
from hips.inference.hmc import hmc
def hmc_objective(params):
# Unpack params
assert params.size == K + K * D
assert params.ndim == 1
b = params[:K]
logpi = anp.tile(b[None, :], (K, 1))
W = params[K:].reshape((D, K))
return self.joint_log_probability(logpi, W, stateseqs, covseqs)
# hmc_objective = lambda params: self.joint_log_probability(params, stateseqs, covseqs)
grad_hmc_objective = grad(hmc_objective)
x0 = np.concatenate((self.b, np.ravel(self.W)))
xf, self.step_sz, self.accept_rate = \
hmc(hmc_objective, grad_hmc_objective,
step_sz=self.step_sz, n_steps=n_steps, q_curr=x0,
negative_log_prob=False,
adaptive_step_sz=True,
avg_accept_rate=self.accept_rate)
self.b = xf[:K]
self.W = xf[K:].reshape((D, K))
### EM
示例12: expected_logpi
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import tile [as 別名]
def expected_logpi(self):
return np.tile(self.expected_b[None,:], (self.num_states, 1))
示例13: expected_logpi_WT
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import tile [as 別名]
def expected_logpi_WT(self):
return np.tile(self.expected_bWT[:,None,:], (1, self.num_states, 1))
示例14: expected_logpi_logpiT
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import tile [as 別名]
def expected_logpi_logpiT(self):
return np.tile(self.expected_bsq[:,None,None], (1, self.num_states, self.num_states))
示例15: test_tile
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import tile [as 別名]
def test_tile():
combo_check(np.tile, [0])([R(2,1,3,1)], reps=[(1, 4, 1, 2)])
combo_check(np.tile, [0])([R(1,2)], reps=[(1,2), (2,3), (3,2,1)])
combo_check(np.tile, [0])([R(1)], reps=[(2,), 2])