當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.sum方法代碼示例

本文整理匯總了Python中autograd.numpy.sum方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.sum方法的具體用法?Python numpy.sum怎麽用?Python numpy.sum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.sum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sum [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        l = []
        for j in range(self.n_var):
            l.append((j + 1) * x[:, j] ** 2)
        sum_jx = anp.sum(anp.column_stack(l), axis=1)

        a = anp.sum(anp.cos(x) ** 4, axis=1)
        b = 2 * anp.prod(anp.cos(x) ** 2, axis=1)
        c = (anp.sqrt(sum_jx)).flatten()
        c = c + (c == 0) * 1e-20

        f = -anp.absolute((a - b) / c)

        # Constraints
        g1 = -anp.prod(x, 1) + 0.75
        g2 = anp.sum(x, axis=1) - 7.5 * self.n_var

        out["F"] = f
        out["G"] = anp.column_stack([g1, g2]) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:21,代碼來源:g.py

示例2: __init__

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sum [as 別名]
def __init__(self, n_var=2, n_constr=1, option="linear"):
        super().__init__(n_var=n_var, n_obj=2, n_constr=n_constr, xl=0, xu=1, type_var=anp.double)

        def g_linear(x):
            return 1 + anp.sum(x, axis=1)

        def g_multimodal(x):
            A = 10
            return 1 + A * x.shape[1] + anp.sum(x ** 2 - A * anp.cos(2 * anp.pi * x), axis=1)

        if option == "linear":
            self.calc_g = g_linear

        elif option == "multimodal":
            self.calc_g = g_multimodal
            self.xl[:, 1:] = -5.12
            self.xu[:, 1:] = 5.12

        else:
            print("Unknown option for CTP single.") 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:22,代碼來源:ctp.py

示例3: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sum [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        f1 = - (25 * (x[:, 0] - 2) ** 2 + (x[:, 1] - 2) ** 2 + (x[:, 2] - 1) ** 2 + (x[:, 3] - 4) ** 2 + (
                    x[:, 4] - 1) ** 2)
        f2 = anp.sum(anp.square(x), axis=1)

        g1 = (x[:, 0] + x[:, 1] - 2.0) / 2.0
        g2 = (6.0 - x[:, 0] - x[:, 1]) / 6.0
        g3 = (2.0 - x[:, 1] + x[:, 0]) / 2.0
        g4 = (2.0 - x[:, 0] + 3.0 * x[:, 1]) / 2.0
        g5 = (4.0 - (x[:, 2] - 3.0) ** 2 - x[:, 3]) / 4.0
        g6 = ((x[:, 4] - 3.0) ** 2 + x[:, 5] - 4.0) / 4.0

        out["F"] = anp.column_stack([f1, f2])

        out["G"] = anp.column_stack([g1, g2, g3, g4, g5, g6])
        out["G"] = - out["G"] 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:18,代碼來源:osy.py

示例4: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sum [as 別名]
def _evaluate(self, x, out, *args, **kwargs):

        _x = [x[:, :30]]
        for i in range(self.m - 1):
            _x.append(x[:, 30 + i * self.n: 30 + (i + 1) * self.n])

        u = anp.column_stack([x_i.sum(axis=1) for x_i in _x])
        v = (2 + u) * (u < self.n) + 1 * (u == self.n)
        g = v[:, 1:].sum(axis=1)

        f1 = 1 + u[:, 0]
        f2 = g * (1 / f1)

        if self.normalize:
            f1 = normalize(f1, 1, 31)
            f2 = normalize(f2, (self.m-1) * 1/31, (self.m-1))

        out["F"] = anp.column_stack([f1, f2]) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:20,代碼來源:zdt.py

示例5: get_loss

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sum [as 別名]
def get_loss(self, model):
        """Computes the loss/fidelity of a given model wrt to the observation

        Parameters
        ----------
        model: array
            The model from `Blend`

        Returns
        -------
        result: array
            Scalar tensor with the likelihood of the model
            given the image data
        """
        model_ = self.render(model)
        if self.frame != self.model_frame:
            images_ = self.images[self.slices_for_images]
            weights_ = self.weights[self.slices_for_images]
        else:
            images_ = self.images
            weights_ = self.weights

        return self.log_norm + np.sum(weights_ * (model_ - images_) ** 2) / 2 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:25,代碼來源:observation.py

示例6: log_norm

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sum [as 別名]
def log_norm(self):
        try:
            return self._log_norm
        except AttributeError:
            if self.frame != self.model_frame:
                images_ = self.images[self.slices_for_images]
                weights_ = self.weights[self.slices_for_images]
            else:
                images_ = self.images
                weights_ = self.weights

            # normalization of the single-pixel likelihood:
            # 1 / [(2pi)^1/2 (sigma^2)^1/2]
            # with inverse variance weights: sigma^2 = 1/weight
            # full likelihood is sum over all data samples: pixel in images
            # NOTE: this assumes that all pixels are used in likelihood!
            log_sigma = np.zeros(weights_.shape, dtype=self.weights.dtype)
            cuts = weights_ > 0
            log_sigma[cuts] = np.log(1 / weights_[cuts])
            self._log_norm = (
                    np.prod(images_.shape) / 2 * np.log(2 * np.pi)
                    + np.sum(log_sigma) / 2
            )
        return self._log_norm 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:26,代碼來源:observation.py

示例7: objective

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sum [as 別名]
def objective(self, w):
        obj = 0
        N = float(sum([np.sum(d[1]) for d in self.data_list]))
        for F,S in self.data_list:
            psi = np.dot(F, w)
            lam = self.link(psi)
            obj -= np.sum(S * np.log(lam) -lam*self.dt) / N
            # assert np.isfinite(ll)

        # Add penalties
        obj += (0.5 * np.sum(w[1:]**2) / self.sigma**2) / N
        obj += np.sum(np.abs(w[1:]) * self.lmbda) / N

        # assert np.isfinite(obj)

        return obj 
開發者ID:slinderman,項目名稱:pyhawkes,代碼行數:18,代碼來源:standard_models.py

示例8: G

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sum [as 別名]
def G(self):
        full_W = np.array([node.w for node in self.nodes])
        WB = full_W[:,1:].reshape((self.K,self.K, self.B))

        # Weight matrix is summed over impulse response functions
        WT = WB.sum(axis=2)

        # Impulse response weights are normalized weights
        GT = WB / WT[:,:,None]

        # Then we transpose so that the impuolse matrix is (outgoing x incoming x basis)
        G = np.transpose(GT, [1,0,2])

        # TODO: Decide if this is still necessary
        for k1 in range(self.K):
            for k2 in range(self.K):
                if G[k1,k2,:].sum() < 1e-2:
                    G[k1,k2,:] = 1.0/self.B
        return G 
開發者ID:slinderman,項目名稱:pyhawkes,代碼行數:21,代碼來源:standard_models.py

示例9: get_treeseq_configs

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sum [as 別名]
def get_treeseq_configs(treeseq, sampled_n):
    mat = np.zeros((len(sampled_n), sum(sampled_n)), dtype=int)
    j = 0
    for i, n in enumerate(sampled_n):
        for _ in range(n):
            mat[i, j] = 1
            j += 1
    mat = scipy.sparse.csr_matrix(mat)

    def get_config(genos):
        derived_counts = mat.dot(genos)
        return np.array([
            sampled_n - derived_counts,
            derived_counts
        ]).T

    for v in treeseq.variants():
        yield get_config(v.genotypes) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:20,代碼來源:demography.py

示例10: resample

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sum [as 別名]
def resample(self):
        """Create a new SFS by resampling blocks with replacement.

        Note the resampled SFS is assumed to have the same length in base pairs \
        as the original SFS, which may be a poor assumption if the blocks are not of equal length.

        :returns: Resampled SFS
        :rtype: :class:`Sfs`
        """
        loci = np.random.choice(
            np.arange(self.n_loci), size=self.n_loci, replace=True)
        mat = self.freqs_matrix[:, loci]
        to_keep = np.asarray(mat.sum(axis=1) > 0).squeeze()
        to_keep = np.arange(len(self.configs))[to_keep]
        mat = mat[to_keep, :]
        configs = _ConfigList_Subset(self.configs, to_keep)

        return self.from_matrix(mat, configs, self.folded, self.length) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:20,代碼來源:sfs.py

示例11: _entropy

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sum [as 別名]
def _entropy(self):
        counts = self._total_freqs
        n_snps = float(self.n_snps())
        p = counts / n_snps
        # return np.sum(p * np.log(p))
        ret = np.sum(p * np.log(p))

        # correct for missing data
        sampled_n = np.sum(self.configs.value, axis=2)
        sampled_n_counts = co.Counter()
        assert len(counts) == len(sampled_n)
        for c, n in zip(counts, sampled_n):
            n = tuple(n)
            sampled_n_counts[n] += c
        sampled_n_counts = np.array(
            list(sampled_n_counts.values()), dtype=float)

        ret = ret + np.sum(sampled_n_counts / n_snps *
                           np.log(n_snps / sampled_n_counts))
        assert not np.isnan(ret)
        return ret 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:23,代碼來源:sfs.py

示例12: _build_old_new_idxs

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sum [as 別名]
def _build_old_new_idxs(self, folded):
        idxs = self.full_configs._augmented_idxs(folded)

        denom_idx_key = 'denom_idx'
        denom_idx = idxs[denom_idx_key]
        idxs = {k: v[self.sub_idxs]
                for k, v in list(idxs.items()) if k != denom_idx_key}

        old_idxs = np.array(
            list(set(sum(map(list, idxs.values()), [denom_idx]))))
        old_2_new_idxs = {old_id: new_id for new_id,
                          old_id in enumerate(old_idxs)}

        idxs = {k: np.array([old_2_new_idxs[old_id]
                             for old_id in v], dtype=int)
                for k, v in list(idxs.items())}
        idxs[denom_idx_key] = old_2_new_idxs[denom_idx]
        return old_idxs, idxs 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:20,代碼來源:configurations.py

示例13: _many_score_cov

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sum [as 別名]
def _many_score_cov(params, data, demo_func, **kwargs):
    params = np.array(params)

    def f_vec(x):
        ret = _composite_log_likelihood(
            data, demo_func(*x), vector=True, **kwargs)
        # centralize
        return ret - np.mean(ret)

    # g_out = einsum('ij,ik', jacobian(f_vec)(params), jacobian(f_vec)(params))
    # but computed in a roundabout way because jacobian implementation is slow
    def _g_out_antihess(x):
        l = f_vec(x)
        lc = make_constant(l)
        return np.sum(0.5 * (l**2 - l * lc - lc * l))
    return autograd.hessian(_g_out_antihess)(params) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:18,代碼來源:confidence_region.py

示例14: sfs

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sum [as 別名]
def sfs(self, n):
        if n == 0:
            return np.array([0.])
        Et_jj = self.etjj(n)
        #assert np.all(Et_jj[:-1] - Et_jj[1:] >= 0.0) and np.all(Et_jj >= 0.0) and np.all(Et_jj <= self.tau)

        ret = np.sum(Et_jj[:, None] * Wmatrix(n), axis=0)

        before_tmrca = self.tau - np.sum(ret * np.arange(1, n) / n)
        # ignore branch length above untruncated TMRCA
        if self.tau == float('inf'):
            before_tmrca = 0.0

        ret = np.concatenate((np.array([0.0]), ret, np.array([before_tmrca])))
        return ret

    # def transition_prob(self, v, axis=0):
    #     return moran_model.moran_action(self.scaled_time, v, axis=axis) 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:20,代碼來源:size_history.py

示例15: _mut_factor_het

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sum [as 別名]
def _mut_factor_het(sfs, demo, mut_rate, vector, p_missing):
    mut_rate = mut_rate * np.ones(sfs.n_loci)
    E_het = expected_heterozygosity(
        demo,
        restrict_to_pops=np.array(
            sfs.sampled_pops)[sfs.ascertainment_pop])

    p_missing = p_missing * np.ones(len(sfs.ascertainment_pop))
    p_missing = p_missing[sfs.ascertainment_pop]
    lambd = np.einsum("i,j->ij", mut_rate, E_het * (1.0 - p_missing))

    counts = sfs.avg_pairwise_hets[:, sfs.ascertainment_pop]
    ret = -lambd + counts * np.log(lambd) - scipy.special.gammaln(counts + 1)
    ret = ret * sfs.sampled_n[sfs.ascertainment_pop] / float(
        np.sum(sfs.sampled_n[sfs.ascertainment_pop]))
    if not vector:
        ret = np.sum(ret)
    else:
        ret = np.sum(ret, axis=1)
    return ret 
開發者ID:popgenmethods,項目名稱:momi2,代碼行數:22,代碼來源:likelihood.py


注:本文中的autograd.numpy.sum方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。