本文整理匯總了Python中autograd.numpy.std方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.std方法的具體用法?Python numpy.std怎麽用?Python numpy.std使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類autograd.numpy
的用法示例。
在下文中一共展示了numpy.std方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: check_num_snps
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import std [as 別名]
def check_num_snps(sampled_n_dict, demo, num_loci, mut_rate, ascertainment_pop=None, error_matrices=None):
if error_matrices is not None or ascertainment_pop is not None:
# TODO
raise NotImplementedError
#seg_sites = momi.simulate_ms(
# ms_path, demo, num_loci=num_loci, mut_rate=mut_rate)
#sfs = seg_sites.sfs
num_bases = 1000
sfs = demo.simulate_data(
sampled_n_dict=sampled_n_dict,
muts_per_gen=mut_rate/num_bases,
recoms_per_gen=0,
length=num_bases,
num_replicates=num_loci)._sfs
n_sites = sfs.n_snps(vector=True)
n_sites_mean = np.mean(n_sites)
n_sites_sd = np.std(n_sites)
# TODO this test isn't very useful because expected_branchlen is not used anywhere internally anymore
n_sites_theoretical = demo.expected_branchlen(sampled_n_dict) * mut_rate
#n_sites_theoretical = momi.expected_total_branch_len(
# demo, ascertainment_pop=ascertainment_pop, error_matrices=error_matrices) * mut_rate
zscore = -np.abs(n_sites_mean - n_sites_theoretical) / n_sites_sd
pval = scipy.stats.norm.cdf(zscore) * 2.0
assert pval >= .05
示例2: batch_normalize
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import std [as 別名]
def batch_normalize(activations):
mbmean = np.mean(activations, axis=0, keepdims=True)
return (activations - mbmean) / (np.std(activations, axis=0, keepdims=True) + 1)
示例3: test_std
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import std [as 別名]
def test_std(): stat_check(np.std)
# Unary ufunc tests
示例4: test_std_ddof
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import std [as 別名]
def test_std_ddof():
B = npr.randn(3)
C = npr.randn(3, 4)
D = npr.randn(1, 3)
combo_check(np.std, (0,))([B, C, D], axis=[None], keepdims=[True, False], ddof=[0, 1])
combo_check(np.std, (0,))([C, D], axis=[None, 1], keepdims=[True, False], ddof=[2])
示例5: standardize
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import std [as 別名]
def standardize(X):
mx = np.mean(X, 0)
stdx = np.std(X, axis=0)
# Assume standard deviations are not 0
Zx = old_div((X-mx),stdx)
assert np.all(np.isfinite(Zx))
return Zx
示例6: __str__
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import std [as 別名]
def __str__(self):
mean_x = np.mean(self.X, 0)
std_x = np.std(self.X, 0)
prec = 4
desc = ''
desc += 'E[x] = %s \n'%(np.array_str(mean_x, precision=prec ) )
desc += 'Std[x] = %s \n' %(np.array_str(std_x, precision=prec))
return desc
示例7: plot_runtime
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import std [as 別名]
def plot_runtime(ex, fname, func_xvalues, xlabel, func_title=None):
results = glo.ex_load_result(ex, fname)
value_accessor = lambda job_results: job_results['time_secs']
vf_pval = np.vectorize(value_accessor)
# results['job_results'] is a dictionary:
# {'test_result': (dict from running perform_test(te) '...':..., }
times = vf_pval(results['job_results'])
repeats, _, n_methods = results['job_results'].shape
time_avg = np.mean(times, axis=0)
time_std = np.std(times, axis=0)
xvalues = func_xvalues(results)
#ns = np.array(results[xkey])
#te_proportion = 1.0 - results['tr_proportion']
#test_sizes = ns*te_proportion
line_styles = func_plot_fmt_map()
method_labels = get_func2label_map()
func_names = [f.__name__ for f in results['method_job_funcs'] ]
for i in range(n_methods):
te_proportion = 1.0 - results['tr_proportion']
fmt = line_styles[func_names[i]]
#plt.errorbar(ns*te_proportion, mean_rejs[:, i], std_pvals[:, i])
method_label = method_labels[func_names[i]]
plt.errorbar(xvalues, time_avg[:, i], yerr=time_std[:,i], fmt=fmt,
label=method_label)
ylabel = 'Time (s)'
plt.ylabel(ylabel)
plt.xlabel(xlabel)
plt.xlim([np.min(xvalues), np.max(xvalues)])
plt.xticks( xvalues, xvalues )
plt.legend(loc='best')
plt.gca().set_yscale('log')
title = '%s. %d trials. '%( results['prob_label'],
repeats ) if func_title is None else func_title(results)
plt.title(title)
#plt.grid()
return results