本文整理匯總了Python中autograd.numpy.stack方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.stack方法的具體用法?Python numpy.stack怎麽用?Python numpy.stack使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類autograd.numpy
的用法示例。
在下文中一共展示了numpy.stack方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: calc_jacobian
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import stack [as 別名]
def calc_jacobian(start, end):
# if the end_box is not a box - autograd can not track back
if not isbox(end):
return vspace(start.shape).zeros()
# the final jacobian matrices
jac = []
# the backward pass is done for each objective function once
for j in range(end.shape[1]):
b = anp.zeros(end.shape)
b[:, j] = 1
n = new_box(b, 0, VJPNode.new_root())
_jac = backward_pass(n, end._node)
jac.append(_jac)
jac = anp.stack(jac, axis=1)
return jac
示例2: _build_errors_df
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import stack [as 別名]
def _build_errors_df(name_errors, label):
"""Helper to build errors DataFrame."""
series = []
percentiles = np.linspace(0, 100, 21)
index = percentiles / 100
for name, errors in name_errors:
series.append(pd.Series(
np.nanpercentile(errors, q=percentiles), index=index, name=name))
df = pd.concat(series, axis=1)
df.columns.name = 'derivative'
df.index.name = 'quantile'
df = df.stack().rename('error').reset_index()
with np.errstate(divide='ignore'):
df['log(error)'] = np.log(df['error'])
if label is not None:
df['label'] = label
return df
示例3: test_grad_and_aux
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import stack [as 別名]
def test_grad_and_aux():
A = npr.randn(5, 4)
x = npr.randn(4)
f = lambda x: (np.sum(np.dot(A, x)), x**2)
g = lambda x: np.sum(np.dot(A, x))
assert len(grad_and_aux(f)(x)) == 2
check_equivalent(grad_and_aux(f)(x)[0], grad(g)(x))
check_equivalent(grad_and_aux(f)(x)[1], x**2)
## No longer support this behavior
# def test_make_ggnvp_broadcasting():
# A = npr.randn(4, 5)
# x = npr.randn(10, 4)
# v = npr.randn(10, 4)
# fun = lambda x: np.tanh(np.dot(x, A))
# res1 = np.stack([_make_explicit_ggnvp(fun)(xi)(vi) for xi, vi in zip(x, v)])
# res2 = make_ggnvp(fun)(x)(v)
# check_equivalent(res1, res2)
示例4: calc_jacobian
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import stack [as 別名]
def calc_jacobian(start, end):
# if the end_box is not a box - autograd can not track back
if not isbox(end):
return vspace(start.shape).zeros()
# the final jacobian matrices
jac = []
# the backward pass is done for each objective function once
for j in range(end.shape[1]):
b = anp.zeros(end.shape)
b[:, j] = 1
n = new_box(b, 0, VJPNode.new_root(b))
_jac = backward_pass(n, end._node)
jac.append(_jac)
jac = anp.stack(jac, axis=1)
return jac
示例5: convert_results
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import stack [as 別名]
def convert_results(results, interface):
"""Convert a list of results coming from multiple QNodes
to the object required by each interface for auto-differentiation.
Internally, this method makes use of ``tf.stack``, ``torch.stack``,
and ``np.vstack``.
Args:
results (list): list containing the results from
multiple QNodes
interface (str): the interfaces of the underlying QNodes
Returns:
list or array or torch.Tensor or tf.Tensor: the converted
and stacked results.
"""
if interface == "tf":
import tensorflow as tf
return tf.stack(results)
if interface == "torch":
import torch
return torch.stack(results, dim=0)
if interface in ("autograd", "numpy"):
from autograd import numpy as np
return np.stack(results)
return results
示例6: grid
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import stack [as 別名]
def grid(num, ndim, large=False):
"""Build a uniform grid with num points along each of ndim axes."""
if not large:
_check_not_too_large(np.power(num, ndim) * ndim)
x = np.linspace(0, 1, num, dtype='float64')
w = 1 / (num - 1)
points = np.stack(
np.meshgrid(*[x for _ in range(ndim)], indexing='ij'), axis=-1)
return points, w
示例7: autograd
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import stack [as 別名]
def autograd(f, ds, points):
"""Evaluate derivatives of f on the given points."""
df_ds = lambda *args: f(np.stack(args, axis=-1))
for i in ds:
df_ds = egrad(df_ds, i)
ndim = points.shape[-1]
return df_ds(*[points[..., i] for i in range(ndim)])
示例8: make_pinwheel
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import stack [as 別名]
def make_pinwheel(radial_std, tangential_std, num_classes, num_per_class, rate,
rs=npr.RandomState(0)):
"""Based on code by Ryan P. Adams."""
rads = np.linspace(0, 2*np.pi, num_classes, endpoint=False)
features = rs.randn(num_classes*num_per_class, 2) \
* np.array([radial_std, tangential_std])
features[:, 0] += 1
labels = np.repeat(np.arange(num_classes), num_per_class)
angles = rads[labels] + rate * np.exp(features[:,0])
rotations = np.stack([np.cos(angles), -np.sin(angles), np.sin(angles), np.cos(angles)])
rotations = np.reshape(rotations.T, (-1, 2, 2))
return np.einsum('ti,tij->tj', features, rotations)
示例9: test_stack_1d
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import stack [as 別名]
def test_stack_1d(): combo_check(np.stack, [0])([(R(2),), (R(2), R(2))], axis=[0, 1])
示例10: get_d_paretomtl_init
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import stack [as 別名]
def get_d_paretomtl_init(grads,value,weights,i):
# calculate the gradient direction for Pareto MTL initialization
nobj, dim = grads.shape
# check active constraints
normalized_current_weight = weights[i]/np.linalg.norm(weights[i])
normalized_rest_weights = np.delete(weights, (i), axis=0) / np.linalg.norm(np.delete(weights, (i), axis=0), axis = 1,keepdims = True)
w = normalized_rest_weights - normalized_current_weight
gx = np.dot(w,value/np.linalg.norm(value))
idx = gx > 0
if np.sum(idx) <= 0:
return np.zeros(nobj)
if np.sum(idx) == 1:
sol = np.ones(1)
else:
vec = np.dot(w[idx],grads)
sol, nd = MinNormSolver.find_min_norm_element(vec)
# calculate the weights
weight0 = np.sum(np.array([sol[j] * w[idx][j ,0] for j in np.arange(0, np.sum(idx))]))
weight1 = np.sum(np.array([sol[j] * w[idx][j ,1] for j in np.arange(0, np.sum(idx))]))
weight = np.stack([weight0,weight1])
return weight
示例11: concave_fun_eval
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import stack [as 別名]
def concave_fun_eval(x):
"""
return the function values and gradient values
"""
return np.stack([f1(x), f2(x)]), np.stack([f1_dx(x), f2_dx(x)])
### create the ground truth Pareto front ###
示例12: linear_scalarization_search
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import stack [as 別名]
def linear_scalarization_search(t_iter = 100, n_dim = 20, step_size = 1):
"""
linear scalarization with randomly generated weights
"""
r = np.random.rand(1)
weights = np.stack([r, 1-r])
x = np.random.uniform(-0.5,0.5,n_dim)
for t in range(t_iter):
f, f_dx = concave_fun_eval(x)
x = x - step_size * np.dot(weights.T,f_dx).flatten()
return x, f
示例13: callback
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import stack [as 別名]
def callback(params, iter, g):
pred = ode_pred(params, true_y0, t)
print("Iteration {:d} train loss {:.6f}".format(
iter, L1_loss(pred, true_y)))
ax_traj.cla()
ax_traj.set_title('Trajectories')
ax_traj.set_xlabel('t')
ax_traj.set_ylabel('x,y')
ax_traj.plot(t, true_y[:, 0], '-', t, true_y[:, 1], 'g-')
ax_traj.plot(t, pred[:, 0], '--', t, pred[:, 1], 'b--')
ax_traj.set_xlim(t.min(), t.max())
ax_traj.set_ylim(-2, 2)
ax_traj.xaxis.set_ticklabels([])
ax_traj.yaxis.set_ticklabels([])
ax_traj.legend()
ax_phase.cla()
ax_phase.set_title('Phase Portrait')
ax_phase.set_xlabel('x')
ax_phase.set_ylabel('y')
ax_phase.plot(true_y[:, 0], true_y[:, 1], 'g-')
ax_phase.plot(pred[:, 0], pred[:, 1], 'b--')
ax_phase.set_xlim(-2, 2)
ax_phase.set_ylim(-2, 2)
ax_phase.xaxis.set_ticklabels([])
ax_phase.yaxis.set_ticklabels([])
ax_vecfield.cla()
ax_vecfield.set_title('Learned Vector Field')
ax_vecfield.set_xlabel('x')
ax_vecfield.set_ylabel('y')
ax_vecfield.xaxis.set_ticklabels([])
ax_vecfield.yaxis.set_ticklabels([])
# vector field plot
y, x = npo.mgrid[-2:2:21j, -2:2:21j]
dydt = nn_predict(np.stack([x, y], -1).reshape(21 * 21, 2), 0,
params).reshape(-1, 2)
mag = np.sqrt(dydt[:, 0]**2 + dydt[:, 1]**2).reshape(-1, 1)
dydt = (dydt / mag)
dydt = dydt.reshape(21, 21, 2)
ax_vecfield.streamplot(x, y, dydt[:, :, 0], dydt[:, :, 1], color="black")
ax_vecfield.set_xlim(-2, 2)
ax_vecfield.set_ylim(-2, 2)
fig.tight_layout()
plt.draw()
plt.pause(0.001)
# Train neural net dynamics to match data.
示例14: build_mog_bbsvi
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import stack [as 別名]
def build_mog_bbsvi(logprob, num_samples, k=10, rs=npr.RandomState(0)):
init_component_var_params = init_gaussian_var_params
component_log_density = variational_log_density_gaussian
component_sample = sample_diag_gaussian
def unpack_mixture_params(mixture_params):
log_weights = log_normalize(mixture_params[:k])
var_params = np.reshape(mixture_params[k:], (k, -1))
return log_weights, var_params
def init_var_params(D, rs=npr.RandomState(0), **kwargs):
log_weights = np.ones(k)
component_weights = [init_component_var_params(D, rs=rs, **kwargs) for i in range(k)]
return np.concatenate([log_weights] + component_weights)
def sample(var_mixture_params, num_samples, rs):
"""Sample locations aren't a continuous function of parameters
due to multinomial sampling."""
log_weights, var_params = unpack_mixture_params(var_mixture_params)
samples = np.concatenate([component_sample(params_k, num_samples, rs)[:, np.newaxis, :]
for params_k in var_params], axis=1)
ixs = np.random.choice(k, size=num_samples, p=np.exp(log_weights))
return np.array([samples[i, ix, :] for i, ix in enumerate(ixs)])
def mixture_log_density(var_mixture_params, x):
"""Returns a weighted average over component densities."""
log_weights, var_params = unpack_mixture_params(var_mixture_params)
component_log_densities = np.vstack([component_log_density(params_k, x)
for params_k in var_params]).T
return logsumexp(component_log_densities + log_weights, axis=1, keepdims=False)
def mixture_elbo(var_mixture_params, t):
# We need to only sample the continuous component parameters,
# and integrate over the discrete component choice
def mixture_lower_bound(params):
"""Provides a stochastic estimate of the variational lower bound."""
samples = component_sample(params, num_samples, rs)
log_qs = mixture_log_density(var_mixture_params, samples)
log_ps = logprob(samples, t)
log_ps = np.reshape(log_ps, (num_samples, -1))
log_qs = np.reshape(log_qs, (num_samples, -1))
return np.mean(log_ps - log_qs)
log_weights, var_params = unpack_mixture_params(var_mixture_params)
component_elbos = np.stack(
[mixture_lower_bound(params_k) for params_k in var_params])
return np.sum(component_elbos*np.exp(log_weights))
return init_var_params, mixture_elbo, mixture_log_density, sample
示例15: get_d_paretomtl
# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import stack [as 別名]
def get_d_paretomtl(grads,value,weights,i):
# calculate the gradient direction for Pareto MTL
nobj, dim = grads.shape
# check active constraints
normalized_current_weight = weights[i]/np.linalg.norm(weights[i])
normalized_rest_weights = np.delete(weights, (i), axis=0) / np.linalg.norm(np.delete(weights, (i), axis=0), axis = 1,keepdims = True)
w = normalized_rest_weights - normalized_current_weight
# solve QP
gx = np.dot(w,value/np.linalg.norm(value))
idx = gx > 0
vec = np.concatenate((grads, np.dot(w[idx],grads)), axis = 0)
# # use cvxopt to solve QP
#
# P = np.dot(vec , vec.T)
#
# q = np.zeros(nobj + np.sum(idx))
#
# G = - np.eye(nobj + np.sum(idx) )
# h = np.zeros(nobj + np.sum(idx))
#
#
#
# A = np.ones(nobj + np.sum(idx)).reshape(1,nobj + np.sum(idx))
# b = np.ones(1)
# cvxopt.solvers.options['show_progress'] = False
# sol = cvxopt_solve_qp(P, q, G, h, A, b)
# use MinNormSolver to solve QP
sol, nd = MinNormSolver.find_min_norm_element(vec)
# reformulate ParetoMTL as linear scalarization method, return the weights
weight0 = sol[0] + np.sum(np.array([sol[j] * w[idx][j - 2,0] for j in np.arange(2,2 + np.sum(idx))]))
weight1 = sol[1] + np.sum(np.array([sol[j] * w[idx][j - 2,1] for j in np.arange(2,2 + np.sum(idx))]))
weight = np.stack([weight0,weight1])
return weight