當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.sqrt方法代碼示例

本文整理匯總了Python中autograd.numpy.sqrt方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.sqrt方法的具體用法?Python numpy.sqrt怎麽用?Python numpy.sqrt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在autograd.numpy的用法示例。


在下文中一共展示了numpy.sqrt方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sqrt [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        l = []
        for j in range(self.n_var):
            l.append((j + 1) * x[:, j] ** 2)
        sum_jx = anp.sum(anp.column_stack(l), axis=1)

        a = anp.sum(anp.cos(x) ** 4, axis=1)
        b = 2 * anp.prod(anp.cos(x) ** 2, axis=1)
        c = (anp.sqrt(sum_jx)).flatten()
        c = c + (c == 0) * 1e-20

        f = -anp.absolute((a - b) / c)

        # Constraints
        g1 = -anp.prod(x, 1) + 0.75
        g2 = anp.sum(x, axis=1) - 7.5 * self.n_var

        out["F"] = f
        out["G"] = anp.column_stack([g1, g2]) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:21,代碼來源:g.py

示例2: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sqrt [as 別名]
def _evaluate(self, x, out, *args, **kwargs):

        # variable names for convenient access
        x1 = x[:, 0]
        x2 = x[:, 1]
        y = x[:, 2]

        # first objectives
        f1 = x1 * anp.sqrt(16 + anp.square(y)) + x2 * anp.sqrt((1 + anp.square(y)))

        # measure which are needed for the second objective
        sigma_ac = 20 * anp.sqrt(16 + anp.square(y)) / (y * x1)
        sigma_bc = 80 * anp.sqrt(1 + anp.square(y)) / (y * x2)

        # take the max
        f2 = anp.max(anp.column_stack((sigma_ac, sigma_bc)), axis=1)

        # define a constraint
        g1 = f2 - self.Smax

        out["F"] = anp.column_stack([f1, f2])
        out["G"] = g1 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:24,代碼來源:truss2d.py

示例3: _evaluate

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sqrt [as 別名]
def _evaluate(self, x, out, *args, **kwargs):
        f1 = 1.10471 * x[:, 0] ** 2 * x[:, 1] + 0.04811 * x[:, 2] * x[:, 3] * (14.0 + x[:, 1])
        f2 = 2.1952 / (x[:, 3] * x[:, 2] ** 3)

        P = 6000
        L = 14
        t_max = 13600
        s_max = 30000

        R = anp.sqrt(0.25 * (x[:, 1] ** 2 + (x[:, 0] + x[:, 2]) ** 2))
        M = P * (L + x[:, 1] / 2)
        J = 2 * anp.sqrt(0.5) * x[:, 0] * x[:, 1] * (x[:, 1] ** 2 / 12 + 0.25 * (x[:, 0] + x[:, 2]) ** 2)
        t1 = P / (anp.sqrt(2) * x[:, 0] * x[:, 1])
        t2 = M * R / J
        t = anp.sqrt(t1 ** 2 + t2 ** 2 + t1 * t2 * x[:, 1] / R)
        s = 6 * P * L / (x[:, 3] * x[:, 2] ** 2)
        P_c = 64746.022 * (1 - 0.0282346 * x[:, 2]) * x[:, 2] * x[:, 3] ** 3

        g1 = (1 / t_max) * (t - t_max)
        g2 = (1 / s_max) * (s - s_max)
        g3 = (1 / (5 - 0.125)) * (x[:, 0] - x[:, 3])
        g4 = (1 / P) * (P - P_c)

        out["F"] = anp.column_stack([f1, f2])
        out["G"] = anp.column_stack([g1, g2, g3, g4]) 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:27,代碼來源:welded_beam.py

示例4: _calc_pareto_front

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sqrt [as 別名]
def _calc_pareto_front(self, n_points=100, flatten=True):
        regions = [[0, 0.0830015349],
                   [0.182228780, 0.2577623634],
                   [0.4093136748, 0.4538821041],
                   [0.6183967944, 0.6525117038],
                   [0.8233317983, 0.8518328654]]

        pf = []

        for r in regions:
            x1 = anp.linspace(r[0], r[1], int(n_points / len(regions)))
            x2 = 1 - anp.sqrt(x1) - x1 * anp.sin(10 * anp.pi * x1)
            pf.append(anp.array([x1, x2]).T)

        if not flatten:
            pf = anp.concatenate([pf[None,...] for pf in pf])
        else:
            pf = anp.row_stack(pf)

        return pf 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:22,代碼來源:zdt.py

示例5: stochastic_update_Adam

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sqrt [as 別名]
def stochastic_update_Adam(w,grad_w,mt,vt,lrate,iteration):
    beta1 = 0.9;
    beta2 = 0.999;
    epsilon = 1e-8;

    mt = mt*beta1 + (1.0-beta1)*grad_w;
    vt = vt*beta2 + (1.0-beta2)*grad_w**2;

    mt_hat = mt/(1.0-beta1**iteration);
    vt_hat = vt/(1.0-beta2**iteration);

    scal = 1.0/(np.sqrt(vt_hat) + epsilon);

    w = w - lrate*mt_hat*scal;
    
    return w,mt,vt 
開發者ID:maziarraissi,項目名稱:ParametricGP,代碼行數:18,代碼來源:Utilities.py

示例6: area_wetted

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sqrt [as 別名]
def area_wetted(self):
        # Returns the wetted area of a wing.
        area = 0
        for i in range(len(self.xsecs) - 1):
            chord_eff = (self.xsecs[i].chord
                         + self.xsecs[i + 1].chord) / 2
            this_xyz_te = self.xsecs[i].xyz_te()
            that_xyz_te = self.xsecs[i + 1].xyz_te()
            span_le_eff = np.sqrt(
                np.square(self.xsecs[i].xyz_le[1] - self.xsecs[i + 1].xyz_le[1]) +
                np.square(self.xsecs[i].xyz_le[2] - self.xsecs[i + 1].xyz_le[2])
            )
            span_te_eff = np.sqrt(
                np.square(this_xyz_te[1] - that_xyz_te[1]) +
                np.square(this_xyz_te[2] - that_xyz_te[2])
            )
            span_eff = (span_le_eff + span_te_eff) / 2
            area += chord_eff * span_eff
        if self.symmetric:
            area *= 2
        return area 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:23,代碼來源:geometry.py

示例7: get_mcl_normal_direction_at_chord_fraction

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sqrt [as 別名]
def get_mcl_normal_direction_at_chord_fraction(self, chord_fraction):
        # Returns the normal direction of the mean camber line at a specified chord fraction.
        # If you input a single value, returns a 1D numpy array with 2 elements (x,y).
        # If you input a vector of values, returns a 2D numpy array. First index is the point number, second index is (x,y)

        # Right now, does it by finite differencing camber values :(
        # When I'm less lazy I'll make it do it in a proper, more efficient way
        # TODO make this not finite difference
        epsilon = np.sqrt(np.finfo(float).eps)

        cambers = self.get_camber_at_chord_fraction(chord_fraction)
        cambers_incremented = self.get_camber_at_chord_fraction(chord_fraction + epsilon)
        dydx = (cambers_incremented - cambers) / epsilon

        if dydx.shape == 1:  # single point
            normal = np.hstack((-dydx, 1))
            normal /= np.linalg.norm(normal)
            return normal
        else:  # multiple points vectorized
            normal = np.column_stack((-dydx, np.ones(dydx.shape)))
            normal /= np.expand_dims(np.linalg.norm(normal, axis=1), axis=1)  # normalize
            return normal 
開發者ID:peterdsharpe,項目名稱:AeroSandbox,代碼行數:24,代碼來源:geometry.py

示例8: plot_gp

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sqrt [as 別名]
def plot_gp(ax, X, y, pred_mean, pred_cov, plot_xs):
        ax.cla()
        marg_std = np.sqrt(np.diag(pred_cov))
        ax.plot(plot_xs, pred_mean, 'b')
        ax.fill(np.concatenate([plot_xs, plot_xs[::-1]]),
                np.concatenate([pred_mean - 1.96 * marg_std,
                               (pred_mean + 1.96 * marg_std)[::-1]]),
                alpha=.15, fc='Blue', ec='None')

        # Show samples from posterior.
        rs = npr.RandomState(0)
        sampled_funcs = rs.multivariate_normal(pred_mean, pred_cov, size=10)
        ax.plot(plot_xs, sampled_funcs.T)
        ax.plot(X, y, 'kx')
        ax.set_ylim([-1.5, 1.5])
        ax.set_xticks([])
        ax.set_yticks([]) 
開發者ID:HIPS,項目名稱:autograd,代碼行數:19,代碼來源:deep_gaussian_process.py

示例9: create_pf

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sqrt [as 別名]
def create_pf():
    ps = np.linspace(-1/np.sqrt(2),1/np.sqrt(2))
    pf = []
    
    for x1 in ps:
        #generate solutions on the Pareto front:
        x = np.array([x1,x1])
        
        f, f_dx = concave_fun_eval(x)
        pf.append(f)
            
    pf = np.array(pf)
    
    return pf




### optimization method ### 
開發者ID:Xi-L,項目名稱:ParetoMTL,代碼行數:21,代碼來源:run_synthetic_example.py

示例10: gaussbern_rbm_tuple

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sqrt [as 別名]
def gaussbern_rbm_tuple(var, dx=50, dh=10, n=sample_size):
    """
    Get a tuple of Gaussian-Bernoulli RBM problems.
    We follow the parameter settings as described in section 6 of Liu et al.,
    2016.

    - var: Gaussian noise variance for perturbing B.
    - dx: observed dimension
    - dh: latent dimension

    Return p, a DataSource
    """
    with util.NumpySeedContext(seed=1000):
        B = np.random.randint(0, 2, (dx, dh))*2 - 1.0
        b = np.random.randn(dx)
        c = np.random.randn(dh)
        p = density.GaussBernRBM(B, b, c)

        B_perturb = B + np.random.randn(dx, dh)*np.sqrt(var)
        gb_rbm = data.DSGaussBernRBM(B_perturb, b, c, burnin=50)

    return p, gb_rbm 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:24,代碼來源:ex3_vary_nlocs.py

示例11: gbrbm_perturb

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sqrt [as 別名]
def gbrbm_perturb(var_perturb_B, dx=50, dh=10):
    """
    Get a Gaussian-Bernoulli RBM problem where the first entry of the B matrix
    (the matrix linking the latent and the observation) is perturbed.

    - var_perturb_B: Gaussian noise variance for perturbing B.
    - dx: observed dimension
    - dh: latent dimension

    Return p (density), data source
    """
    with util.NumpySeedContext(seed=10):
        B = np.random.randint(0, 2, (dx, dh))*2 - 1.0
        b = np.random.randn(dx)
        c = np.random.randn(dh)
        p = density.GaussBernRBM(B, b, c)

        B_perturb = np.copy(B)
        if var_perturb_B > 1e-7:
            B_perturb[0, 0] = B_perturb[0, 0] + \
                np.random.randn(1)*np.sqrt(var_perturb_B)
        ds = data.DSGaussBernRBM(B_perturb, b, c, burnin=2000)

    return p, ds 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:26,代碼來源:ex1_vary_n.py

示例12: multivariate_normal_density

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sqrt [as 別名]
def multivariate_normal_density(mean, cov, X):
        """
        Exact density (not log density) of a multivariate Gaussian.
        mean: length-d array
        cov: a dxd covariance matrix
        X: n x d 2d-array
        """
        
        evals, evecs = np.linalg.eigh(cov)
        cov_half_inv = evecs.dot(np.diag(evals**(-0.5))).dot(evecs.T)
    #     print(evals)
        half_evals = np.dot(X-mean, cov_half_inv)
        full_evals = np.sum(half_evals**2, 1)
        unden = np.exp(-0.5*full_evals)
        
        Z = np.sqrt(np.linalg.det(2.0*np.pi*cov))
        den = unden/Z
        assert len(den) == X.shape[0]
        return den 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:21,代碼來源:density.py

示例13: perform_test

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sqrt [as 別名]
def perform_test(self, dat):
        """
        dat: a instance of Data
        """
        with util.ContextTimer() as t:
            alpha = self.alpha
            X = dat.data()
            n = X.shape[0]

            # H: length-n vector
            _, H = self.compute_stat(dat, return_pointwise_stats=True)
            test_stat = np.sqrt(old_div(n,2))*np.mean(H)
            stat_var = np.mean(H**2) 
            pvalue = stats.norm.sf(test_stat, loc=0, scale=np.sqrt(stat_var) )
 
        results = {'alpha': self.alpha, 'pvalue': pvalue, 'test_stat': test_stat,
                 'h0_rejected': pvalue < alpha, 'time_secs': t.secs, 
                 }
        return results 
開發者ID:wittawatj,項目名稱:kernel-gof,代碼行數:21,代碼來源:goftest.py

示例14: _calc_pareto_front

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sqrt [as 別名]
def _calc_pareto_front(self, ref_dirs, *args, **kwargs):
        F = super()._calc_pareto_front(ref_dirs, *args, **kwargs)
        a = anp.sqrt(anp.sum(F ** 2, 1) - 3 / 4 * anp.max(F ** 2, axis=1))
        a = anp.expand_dims(a, axis=1)
        a = anp.tile(a, [1, ref_dirs.shape[1]])
        F = F / a

        return F 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:10,代碼來源:cdtlz.py

示例15: constraint_c2

# 需要導入模塊: from autograd import numpy [as 別名]
# 或者: from autograd.numpy import sqrt [as 別名]
def constraint_c2(f, r):
    n_obj = f.shape[1]

    v1 = anp.inf * anp.ones(f.shape[0])

    for i in range(n_obj):
        temp = (f[:, i] - 1) ** 2 + (anp.sum(f ** 2, axis=1) - f[:, i] ** 2) - r ** 2
        v1 = anp.minimum(temp.flatten(), v1)

    a = 1 / anp.sqrt(n_obj)
    v2 = anp.sum((f - a) ** 2, axis=1) - r ** 2
    g = anp.minimum(v1, v2.flatten())

    return g 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:16,代碼來源:cdtlz.py


注:本文中的autograd.numpy.sqrt方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。